INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper ieft-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs inciuded in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additionai charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



THE MOTIONS OF HINGED-BARGE SYSTEMS

IN REGULAR SEAS

by

David Robert Burke Kraemer

A dissertation submitted to the Johns Hopkins University
in conformity with the requirements for

the degree of Doctor of Philosophy

Baltimore, Maryland, USA

January, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3006284

®

UMI

UM! Microform 3006284

Copyright 2001 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

THE MOTIONS OF HINGED-BARGE SYSTEMS IN REGULAR SEAS

Harnessing the oceans’ vast, clean, and renewable energy to do useful work is a tempting
prospect. For over a century, wave-energy conversion devices have been proposed, but
none has emerged as a clearly practical and economical solution. One promising system
is the McCabe Wave Pump (MWP), an articulated-barge system consisting of three barges
hinged together with a large horizontal plate attached below the central barge. Water pumps
are driven by the relative pitching motions of the barges excited by ocean waves. This high-

pressure water can be used to produce potable water or electricity.

A simulation of the motions of a generic hinged-barge system is developed. The equations
of motion are developed so that the nonlinear interactions between the barges are included.
The simulation is general so that it can be used to study other hinged-barge systems, such as
causeway ferry systems or floating airports. The simulation is used to predict the motions
of a scale model that was studied in wave-tank experiments. In the experimental study, it

was observed that the plate attached to the central barge acted as a pendulum. It was also

it
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ABSTRACT i1

observed that the phases of the pitching motions of the barges was such that the motions
were enhanced by the pendulum effect at all of the wave periods studied. Hence, the
increased angular displacements produced greater relative pitching motions which would
lead to higher volume rates of pumped water in the operational system. The numerical
simulations are found to predict the pendulum effect. In addition, the theory predicted
that the after barge motions were significantly less than those of the forward barge, as was
observed in the experimental study. The good agreement between the two data sets gives

confidence in the ability of the theory to predict the performance of the MWP prototype.

The motions of the MWP prototype in regular ocean waves are predicted by the simulation,
and its performance is calculated. By modifyving the length of the system to be compatible
with the wavelength for maximum pitching excitation, the power output of the system is

shown to increase by more than 150%.
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Chapter 1

Introduction

The floating hinged-barge system has been found to have several applications. The earliest
uses of the system were as bridges and piers. Later, and most recently, the system has been
found to be a good configuration for the exploitation of ocean waves. While the analysis
presented herein is applicable to hinged-barge systems in general, the use of these systems

for harnessing ocean wave energy will be emphasized.

Converting the oceans’ vast energy into usable forms has long been a goal. Many systems
have been éroposed to attain this goal, but none has emerged as a practical, economical
solution. The end goal of wave energy conversion is to provide potable water and/or elec-
tricity to remote ocean locations. Fresh water is rapidly becoming more precious around

the globe, and the prospect of converting the energy of the sea is becoming more feasible.

A hinged-barge wave-energy conversion system has been proposed that might be well
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Figure 1.1: Schematic diagram of the elevation of the McCabe Wave Pump.

suited to provide both electricity and potable water; the McCabe Wave Pump (MWP),
sketched in Figure 1.1, is a system that shows great potential. The MWP consists of
three barges hinged together. Ocean waves excite the pitching mode of motion of the
two “power” barges (numbers 1 and 3). These, in turn, actuate water pumps, positioned
over the hinges, which draw power from the barges’ motion relative to the “inertial” central
barge. The inertial barge has a large plate attached to legs suspended below it to damp out

heaving motions.

The system outputs water at high pressure which can be either used for generating electric-
ity, or converted to potable water. It has been shown to be economical to couple the system
with a reverse-osmosis desalination plant for potable water production. Hence, an MWP

would be of great use by small island communities which are surrounded by the ocean but
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CHAPTER 1. INTRODUCTION 3

which have unreliable potable water resources.

In this thesis, the motions of a general hinged-barge system are studied. A simulation is
developed that predicts the motions of the system in regular waves. Theoretical and em-
pirical methods are used to estimate the hydrodynamic forces. The simulation results are
compared with experimental results to evaluate their validity. Finally, a practical applica-
tion of hinged-barge systems, the MWP, is examined and the wave-induced motions are

simulated.

1.1 Historical Background

Since before World War II, systems of hinged barges have been used to load and unload
ships in locations that do not have accessible ports (see the paper by McCormick [35]).
These hinged barge systems are still in use. For example, both the U. S. Army and Navy
currently use slightly differing Causeway Ferry systems. The Navy has also designed a 1

km pier using hinged barges (see the report by Huang [19].

Numerous wave-energy devices have been proposed and studied. Oscillating water column
devices use an entrained column of water excited by wave action acting as a piston, with
a turbine extracting power from the moving air. Salter [43] proposed a “duck-shaped”

mechanical wave power extractor.

Among the numerous systems that have been proposed to extract useful energy from ocean

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 4

waves are groups of hinged barges that recover energy from the relative motion of the
barges. These hinged-barge wave-energy conversion systems have come to be called Hagen-
Cockerell rafts, after twvo men who independently invented very similar systems. Glenn
Hagen filed for a patent on February 13, 1976 (U.S. Patent 4077213); his design called for
barges of different lengths to tune the system to incoming waves of different wavelengths.
Sir Christopher Cockerell filed for his patent on April 21, 1976 (U.S. Patent 4098084). He
described his system as a “ship with a broken back™ [42], and in its first incarnation it had

equal-length pontoons.

Dr. R. P. McCabe of Ireland designed a variation of the Hagen-Cockerell raft idea. He
observed that in long waves, the Hagen-Cockerell system could simply heave with little
relative pitching of the pontoons, behaving approximately like a rigid floating body. Mc-
Cabe’s system incorporated a large plate suspended from the hinge between two pontoons.
This plate was to provide damping in heave, preventing this rigid body heaving and, there-
fore, allowing the system to absorb energy over a wider range of the wave spectrum. On
August 1, 1991, McCabe filed for a patent on a revised system (U. S. Patent 5132550), one
with a third pontoon to which the damping plate is attached, as sketched in Figure 1.1. The
center barge also houses the hydraulic system and other machinery required for operation.
A 40 meter long, 4 meter wide MWP prototype was first deployed in 1996 in the Shan-
non River Estuary, on the west coast of Ireland. McCormick, McCabe, and Kraemer [30]

discuss the practical application of the McCabe Wave Pump.
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CHAPTER 1. INTRODUCTION 5

1.2 Technical Background

1.2.1 Wave Forces on Floating Bodies

Havelock [14] calculates the pressure of waves upon a fixed obstacle with vertical sides us-
ing the distributed source strength over the body surface. Solutions are found for limiting
cases, and the theory is applied to a ship with narrow beam, large draft, and an idealized
profile. The damping of the motions of a ship due to the radiation of waves is estimated
by Havelock [15] by replacing the ship with a distribution of alternating sources and cal-
culating the energy flux radiating from the sources. In a following paper, Havelock [16]
estimates the added-mass and radiation damping of an oscillating floating sphere using the
velocity potential due to a source with periodic strength and its mirror image (above the
water surface).

John [20] develops solutions of the potential flow about floating bodies by making a shallow
water assumption. In the second part of this paper, John [21] solves a similar problem for

harmonic motion of a body, without the shallow water assumption. The boundary value

problem results in a Fredholm integral equation that is solved using a Green’s function.

1.2.2 Panel Methods for Solution of Potential Flow Problems

Hess and Smith [17] use numerical methods to approximate the potential flow solutions for

steady flow about arbitrary bodies. A Green’s function is used, and sources are distributed
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CHAPTER I. INTRODUCTION 6

on the body surface, which is discretized into panels. Garrison [7] applies this method to
bodies floating in water. The Green’s function in this application satisfies the additional
surface and bottom boundary conditions. Faltinsen and Michelsen [6] apply this solution

method to large floating barges.

Several papers propose improvements to the numerical methods used in solving these hy-
drodynamic problems. Kim et al. [22] extend Hess and Smith’s analysis by fitting curved
panels to fit curved ship hulls. Furthermore, the source strength is allowed to vary over
each panel. Zhao and Graham [45] discuss an improved method for the numerical solution
of the wave forces on a single large structure using sources on the discretized hull. Garri-
son [10] describes a method for improving the numerical efficiency of the hyvdrodynamic
analysis of large articulated floating structures. The three-dimensional distributed-source
method 1s deemed appropriate for evaluating the hydrodynamic forces on these systems.
However, distributing panels over the surface of all of the bodies in the system would result
in extremely large matrix equations, the solution of which would require prohibitively ex-
pensive computational resources. Garrison finds that accurate solutions can be obtained by
only evaluating the hydrodynamic interaction between adjacent bodies. The hydrodynamic
interactions between the other bodies are ignored, reducing the computational effort to that

needed to solve the two-body problem for each pair.
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CHAPTER 1. INTRODUCTION 7

1.2.3 Wave-Energy Conversion

McCormick [34] performs a theoretical analysis of an idealized single-degree-of-freedom
wave-energy conversion system, demonstrating how such a system can act like an antenna,
absorbing much more energy than is incident upon the face of the body. The book by
McCormmick [33] provides an overview and analysis of the different types of ocean wave-

energy conversion systems.

1.2.4 Motions of Articulated Barge Systems

Haren and Mei [11] analyze the Hagen-Cockerell raft system and find that three pontoons
with two power converters are the optimal configuration. Haren and Mei [12] use New-
man’s [39] approximate analysis for slender bodies to study the dynamic properties of a
parallel array of these systems, in order to study the effect of interaction among the sys-

tems. In both of the Haren-Mei papers, the waves are limited to head-seas.

Analyses of causeway ferry systems have been performed by Garrison [9], Huang [19], and
McCormick [35]. Huang [19] also analyzes the motions barges connected in a hinged svs-
tem, with application to a causeway ferry for offloading containers from ships. The analysis
is linear, with the wave excitation forces computed from the incident and diffracted wave
potentials on a barge at rest. The hydrodynamic properties (added-mass and damping) of
the barges are computed for still water. Random seas are included in the analysis. New-

man [40] uses a linearized frequency-domain analysis of wave diffraction and radiation
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to analyze both bodies with continuous structural deflection and discontinuous multi-body

systems.

1.2.5 McCabe Wave Pump Studies

The linearized equations of motion for the MWP system are formulated in the study by Mc-
Cormick [35]. The degrees of freedom of the system are limited to heav-e (Z) and pitch (6)
motions. Small angle approximations are used to linearize the system of equations. Fur-
thermore, the original MWP system configuration in that study is significantly different
from its present configuration, sketched in Figure 1.1. The original configuration consists
of two barges, and the inertial plate is attached to the hinge between the two, as first pro-

posed by Dr. R. P. McCabe.

McCormick and Ohl [31] conducted an experimental study of the MWP system. A scale
model was subjected to regular and irregular head-seas in a wave tank, amd a video system
was used to measure the motions of the system in the vertical plane. T he data from this
experiment are modified to account for a discrepancy and used in the present study in

Chapter 5.
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Chapter 2

Equations of Motion

The motions of hinged-barge systems in ocean waves are difficult to predict, due to the
complicated interactions between the barges and the water. In this chapter, the equations
of motion are formulated for a general N-unit system of hinged-barges. Unlike previous
investigations, small-angle approximations are not required in the present investigation.
This is particularly beneficial in the analysis of wave-energy conversion systems, where
large motions are desirable for maximum energy output.

The external forces acting upon the system are investigated in subsequent chapters. Energy-
and force-methods are explored for formulating the equations of motion. In the present

case, the force-based method, in conjunction with computer-aided mathematical computa-

tions, is found to facilitate the formulation of the non-linear equations of motion.

In laboratory experiments, conducted at the U. S. Naval Academy, a model of a hinged-
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barge system with a damping plate suspended from the central barge has exhibited surpris-
ing pitching of the central barge. The damping plate showed unexpected pendulum-like
motions. The significant pitch angles are promising for energy extraction; however, the
central-barge pitching indicates that some of the assumptions of prior analyses are inaccu-
rate. The present analysis makes no small-angle approximations in formulating the equa-
tions of motion; previous analyses (see the paper by McCormick [35]) of the McCabe Wave
Pump (MWP) system have made these approximations. The resulting non-linear equations
of motion more closely model the motions of the hinged-barge system. Surge (x) motions,
which the experiments indicate are critical in exciting the “pendulum” motions of the in-
ertial plate, are included in the analysis. The analysis of McCormick [35] does not allow
for surge motion of the system. Furthermore, the analysis is directed at a system with an
arbitrary number of barges and inertial plates; this allows the analysis to be applied to a

variety of systems in addition to the MWP.

2.1 System Geometry

In order to make the analysis as general as possible, so that configurations of hinged-barge
systems for different applications can be explored, the system geometry is defined with
flexibility in mind. The system can have any combination of barges and horizontal plates,
as sketched in Figure 2.1. Note that any of the horizontal plates can be omitted from the

system. The plates are included to allow the analysis of the McCabe Wave Pump (MWP)
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Unit 1 Unit 2 \ Unit N

Figure 2.1: General N-hinged-barge system.
system, or any hinged-barge system that uses horizontal plates for stability.

Figure 2.2 shows the definitions of the quantities used to describe the geometry of the
hinged-barge system. For the present analysis, each barge is a rectangular prism (a box),
and the plates are, extremely thin (that is, the plate thickness is much smaller than the plate

length or width).

2.2 Energy Method

The nonlinear equations of motion for the general inertial barge system of Figure 2.1 can

be formulated using Lagrange’s equations (see, for example, the book by Merriam [37]):

d (6EK) L, _ oW, oW o

dr oq; +6‘Ii- oq; 6q;

t t
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Figure 2.2: Dimensions of the j-th unit of an N-barge system.
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where ¢; is the i-th generalized displacement coordinate, E, is the Kinetic energy, E, is
the potential energy, 6W,. is the virtual work done by the barges against the hydrodynamic
damping and the damping of the pumps, d¢; is the virtual displacement in the i-th degree of
freedom, and W, is the virtual work done by the wave forces and moments on the barge
system. The terms involving each denvative of g are collected, and the equation of motion

can be written as a familiar matrix equation,
UNgt + [Clqt = {F} 2.2)

where [I] is the inertial matrix, [C] is the damping matrix, {F’} is the vector of external

forces, and q is the vector of generalized displacement coordinates.

To calculate the matrices [/] and [C], one must calculate the kinetic and potential energy
of the system as well as the virtual work done by the system. These quantities are easy
enough to calculate for simple systems, but become much more difficult to find as the

system becomes more complicated.

McCormick [35] uses Lagrange’s equations to formulate the equations of motion for an
earlier version of the McCabe Wave Pump (MWP) which has two power barges and a

damping plate attached to the hinge, as shown in Figure 2.3.

Lagrange’s energy method is not used in the present study. The method described herein
uses a free-body diagram of each individual body, applies Newton’s Second Law of Motion
to each body individually, and then reduces the number of equations by imposing kinematic

constraints. This process is more complicated mathematically, but the equations are much
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14

Water Pumps

Direction of
Wave Travel
—>
e o =
Foreward Power Barge After Power Barge

Inertial-Damping Plate

Figure 2.3: Two-barge version of the McCabe Wave Pump.

more physically intuitive. With computer-aided symbolic mathematical calculations, this

author found that using Newton’s equations of motion is easier and more reliable for certain

complicated dynamic systems.

2.3 Force Method

In this section, Newton’s Second Law of Motion is used to write the equation of motion

for each unit in the hinged-barge system. Kinematic relationships are used to reduce the

number of equations and unknowns, vielding a system of equations that describe the planar

motions of the N-unit hinged-barge system.
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2.3.1 Free-Body Diagram

A free-body diagram for each barge-plate pair (“unit”) is drawn in Figure 2.4, showing the
external forces on the system. The forces and moments on each unit include those on the
barge, those on the plate, and thé hinge forces and moments. Note that the hinge forces
and momerts are considered to be external on each unit because each unit is considered
separately. The forces on the barges are assumed to act on the centers of mass of the

barges; likewise, the plate forces are assumed to act on the plate centers of mass.

Figure 2.4 shows that the forces have been decomposed into their horizontal and vertical
components. For example, for unit number j, the barge forces and moment are £, 1,

i barge,

F}bar “k,and M e 7, where 7, J, and & are unit vectors in the x-, y-, and z-directions, respec-
gey -

tively. The hinge forces and moment acting on barge j exerted by barge j — 1 are F; ;| 1,

Note that the free-body diagram of Figure 2.4, as well as Figures 2.5 and 2.6, show extreme
displacements of the barge/plate units. These displacements are exaggerated for clanty;

such displacements are not expected to occur.

2.3.2 Kinetics

Newton’s second law of motion is applied to each barge for translation and rotation. Each

barge-and-plate unit is first considered separately, as if it is not connected to the other units.
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Fjplate_t

Figure 2.4: Free-body diagram of j-th unit of N-barge system.
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Figure 2.5: Position vectors of the first unit, displaced.

Figure 2.5 shows the position vectors of the first barge, displaced from its rest position.
The coordinate system defined by unit-vectors 7, 7, and k (not shown; k points into the
page) is fixed to the at-rest position of the up-wave hinge of the first barge. This is an

inertial coordinate system. Figure 2.5 also shows the position vectors relating the motion

of the unit’s hinge point to its center of mass.
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Translational Equations of Motion

For unit j, the translational equation of motion is
(1) (2.3)

Note that m; includes both the solid body’s mass as well as the hydrodynamic added-mass.

Referring to Figure 2.4, the horizontal component of equation (2.3) is

Fjlws'e.: ([) + Ffplm, ([) + Ff—l.j,([) + Ej+l_jx([) =

+m Al @)1 2.4)

m. + . + r.
( -/bnrge l'llbnzgc Jpla(c * " Jplate Joum

where A\, and A;,  are the added-masses in surge for the j-th barge and plate, re-
*" Joarge " Jplate

spectively. Equation (2.4) is the equation of motion for the j-th unit in the horizontal

direction.

The vertical component of the translational equation of motion is formulated in the same

manner. Referring again to Figure 2.4, the vertical component of equation (2.3) is

B O+ E O+ F O+ Fy ()=

Ay F (0)-k (2.5)

. +A +m. + :
(m-/bnrgc 3'3/&*: Jptate Jplate Jom

where A, and A;;  are the added-masses in heave for the j-th barge and plate, re-
Jtarge Jplate

spectively. Equation (2.5) is the equation of motion for the j-th unit in the vertical direction.
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Rotational Equation of Motion

For the rotational equation of motion, the moments are taken about center of mass of the
unit, so that

Z Mjcm = ch.\x é!cu (2.6
for unit j, where J i is the mass moment of inertia of the unit about its center of mass,

CM. The parallel-axis theorem can be stated as

Jou=Jp +n I%.aulz (2.7)

where O is a point away {rom the center of mass, and l-r‘o.c.wl is the magmitude of the vector
from CM to O. This equation is used to relate the mass moment of inertia of the unit to the
moments of inertia for the barges and plates. Note that, fora floating body, J,, includes both
the solid body’s mass moment of inertia as well as the hydrodynamic added-mass moment

of inertia in the pitch degree of freedom. Likewise, m includes both the solid body’s mass

as well as the hydrodynamic added-mass. Therefore,

-2
. = . - = . .- . - <+
S J e T As S + (m e T AMJ )(gj {ngc)
2
. +A;.  +lm, +A . =L) 28
Jptate Jplate ( Jplate 1'ljph[=)(€./plale é’.’) ( )

where A; and As are the mass moments of inertia of the j-th barge and plate,
Jbarge

Jplate

respectively.

Taking the moments of the forces about the hinge of unit j using the free-body diagram of
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Figure 2.4, one obtains

jbarg: + lrjl:argzx (é’-’ - é’]bm'gc) Cos[ejCM ([)] - F}barge: ({J - é’-/lnrgc ) Sin[ng.\( ([)]+

—F; ({jpme - {J) Cos[gfc.\((l)] + Fjplaez (€ — é’f ) Sin[gic.\( O]+

jplaxc Jlx:rgzx Jplate

lem +Lhinze -
+ i, {.Z,- cos[8 (Dl + ——5—— S‘“[efc-“([)]} ¥

{ijmgc + Lhinge

M

J.j-1

F,

ey cos[@.

2 Jou

DI=¢; sin[e,-m(t)]} +

Ljh,gc + Lhingc .
M o + Fjj, €5 00800,, (D] = 5 sin[6, ()] ¢ +

J 2

Lj + Lhiuge .
Fju, {——b‘““ cos[d, (D)1 +¢;sin[d fc.\(([)]}

(2.9)

Jou gfc.\(

At this point, for an N-unit system, its motions in the vertical plane are described by the
equations (2.4), (2.5), and (2.9), for a total of 3N equations. Each of these N units moves
independently at this point, leaving 3N acceleration unknowns (¥ jc.\(([)’ % (2),and @ jCM(t),

forj=1,2,...,N.

2.3.3 Internal Forces

Although it is convenient to write the equations of motion for each unit as if it is an in-
dependent body, the units of the hinged-barge systems of interest here are, of course, not
independent of each other. They are connected at the hinge points, making the forces and

moments at the hinges internal forces and moments.

Since the hinge forces are internal to the complete hinged-barge system, they are equal and
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opposite between two adjacent barges. For example, the moment acting on barge j exerted
by barge (j — 1) is equal to the negative of the moment acting on barge (j — 1) exerted by

barge j. Therefore,

Foj© = —F, @
Fijm (D) = —F ;0 (2.10)
M) = =M, 0

forj=2,3,...,N. Of course, for units at either end of the system, the forces and moments

exerted by the non-existent units O and N + 1 are zero; in other words,

Fo.l,,([) =0
Fo, (1) = O 2.1D
M,,z) = O

F:V..'V-i'lx (l) = O
E\’.:\'+l:([ ) = 0 (2.12)

Myna@) = 0

These are the kinetic constraints at the hinges.

The forces and moments external to the system consist of gravity, hydrodynamic, and moor-

ing forces and moments. The internal moments are due the power take-off system (the
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pumps and hydraulic system). The natures of the external forces and moments and internal
moments are addressed in Chapter 3. The internal hinge forces will be eliminated from the

equations in the following section.

2.3.4 Kinematics

The N-hinged-barge system has N + 2 degrees of freedom for the vertical-plane motions
(surge-heave-pitch) investigated here. The position of the system can be specified by, for
example, a horizontal displacement, a vertical displacement, and N angles. Figure 2.6
shows the displacements and angles used to describe the position of the system in this
study. Note that in Section 2.3.2, each unit is treated as an independent free body, with

three displacements to describe its planar motion.

To solve the equations of motion for the motion of the system, the forces and moments
that are external to the system must be specified. These forces and moments, as well as
the hinge moments, are treated in Chapter 3. If the forces and moments external to the
system as well as the internal hinge moments (F}wgc, ijm, M rarge” M e and A_;[‘ joorall
those except the internal hinge forces) are known, then for an N-barge system, we have
3N equations and 3N + 2(N — 1) unknowns. The 3N equations are the surge, heave, and
pitch equations for each of the N units [equations (2.4), (2.5), and (2.9)]. The unknowns

are the 3N acceleration components .‘r'j(t), ’z'j(t), and éjm:(t), forj=1,2,...,N,and the

2(N — 1) hinge force components F}_jﬂx(z), and Fj.j“:(t), for j=1,2,...,N-1. With
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Figure 2.6: Displaced N-unit system, showing displacements and angles used to specify
the position of the system.

more unknowns than equations, the system of equations is not solvable. In order make
the system solvable, kinematic constraints due to the hinges are used to eliminate the extra
unknowns. Finally, the internal forces are eliminated from the equations so that the system

becomes determinate, with the same number of unknowns as degrees of freedom.

The kinematic constraints at the hinges are due to the fact that the downwave hinge of the
J-th unit and the upwave hinge of the (j + 1)-th unit are connected and move together.

Mathematically, these relationships are expressed as
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XD = X, O+ Z{(L,.W Lyinge) cOs[6; (z)]} +
i=1
L Ly
%—cesw (1)) —¢&;sin(6; (t)]
j=L2...N (2.13)
and
j-1
LD = 7, = > {L_ + Ly, sinle, O} -
=1
Lj +Lhin ge ;
—F——sin[d; ()] —{;cos[f; ()],
j=L2,...N (2.19)

Furthermore, since the units are considered to be rigid, the angular displacement measured
about the hinge is the same as the angular displacement measured about the center of mass,

so that

0=6; @ (2.15)

JC\(

By twice taking the time derivative of equations (2.13) and (2.14), the resulting equations

can be used to eliminate the redundant variables X, , %, , ..., %, andZ, ,Z% ,
“CM CM YOM “CM CM

a0’7 ¥y eve 7

%, from the equations of motion. Furthermore, the variables ¥, ,%, ,and#§,
CM CM CM ~CM

“Nem
9:\,(: > are replaced by the quantities used to describe the motion of the N-unit system shown

in Figure 2.1. These acceleration variablesare ¥, ,%, ,and8, ,8, ,...,8, .
g tinge”  thinge hinge’  2CM Mhinge

The kinematic relationships of equations (2.13) and (2.14) eliminate 2(N—1) of the acceleration-

component unknowns. Subtracted from the 3N acceleration components, the number of
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unknown acceleration components can be expressed as
BN=-2(N-1)=N+2 (2.16)

Therefore, the kinematic relationships reduce the number of acceleration-component un-
knowns to N + 2. Combined with the 2(V — 1) hinge-force components, this makes a total
of 3N unknowns. Therefore, with a total of 3V unknowns and 3N equations, the system is

solvable.

Finally, the internal hinge-force unknowns are eliminated. The surge equation of motion
for the N-th unit is solved for Fy_, . , and the heave equation of motion for the N-th unit
is solved for F‘\,_,N: . These hinge forces are substituted into the heave and surge equations
of motion for the (V — 1)-th unit, and in this manner all of the hinge forces are eliminated.
What remains is a system of N + 2 equations in N + 2 unknowns for a physical system with

N + 2 degrees of freedom.

2.3.5 Matrix Equations of Motion

This system of equations can be expressed as a matrix equation, as indicated in equa-

tion (2.2):

Ulgt = {F} (2-17)
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where [/] is the inertial matrix and {F} is the external force vector and moments. Expanding

the above matrix equation for an N-unit system yields

~ 17 (
L, lLa Ly o Iy, X F,
L, Ly Ly . by, < E,
9 — J
[3.1 13,2 [3.3 i I3N+2 Upinge FE&
i [.'V+2,l 1:V+2.2 IN +23 IN +2N+2 | 1 QNW J . F:V+2

J

(2.18)

The external forces and moments on the system, {F}, include gravitational attraction and

hydrodynamic forces. The hydrodynamic forces are separated into viscous and inviscid

forces, and the inviscid force is further decomposed into buoyant, radiation, and scattering

components. These are examined in Chapter 3. For mathematical simplicity, the added-

mass components of the hydrodynamic radiation forces are included in the inertial matrix

([[])- This means that the external force vector, {7}, includes viscous, buoyant, radiation

damping, and scattering forces.

Appendix D.1.1 describes the computer program used to formulate the equations of motion

for the hinged-barge system. The inertial and damping matrices and the external force

vector for a general N-barge/N-plate system are presented in this section.

In the horizontal direction, the right-hand side force is
N
F o= Z (F;'zursex * F:'plmx)

i=1

where higher-order terms [those including 6’imge (1)] are neglected.
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[n the vertical direction, again neglecting higher-order terms, the right-hand side force is

B = ZV: (F;bwgc: * F}Wz:) (2.20)

The moment on the right-hand side corresponding to the first barge is

F,=M

lbn:g: lphx:

L + Lhin ge
{ cos[6, (0] - —==_——"=sin[8, (z)]}

L + Lhinge R
——,7— sm[Blm(z)]} -

£, cosl, (I)] -

L
lm‘- Lo cos[é (t)] + Cparge, Sin[elﬁngc(l )]} -
F (2.21)

1 plae.

+ Lhinv
{_W_’)_ cos[6, (z)] + Lotare, sin[6, (I)]}

where higher-order terms [those including 9- (1)] are neglected. For barge i, where i =

N, the corresponding moment on the right-hand side is
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I:i+2 =
L, +Lg.,.
,mz { barge, €OS[6; (t)] + ——’ sin[Bim(l)]} -
L + Lhiug
{ Cplae, cos[6, ([)] + m([)]}
L
‘bargz- { 05[6 (I)] [barge Sln[e ([)]}
L hln ge
... { e~ TV os[6, (0] ~ Ly, Sin), (zn}
N
Z (F}bwgzx + F"jp[agx )( 2 + Lhmoe) sm[9 ([)] -
J=i+l
N
Z (Eibars=: + F.}plazz ) (Lim,ge + Lhinge) COS[9 ([ )],
Jj=i+l
i=12,...N 222

where, again, higher-order terms [those including Oime (7)] are neglected.

The element on the diagonal of the inertial matrix corresponding to the surge of the system
IS

N
I, = Z(mibm +A1-1m +m,  +A ) (2.23)

- lpla(: **plaze;
i=1

The inerual coupling between the surge and heave degrees of freedom is zero, so that
I,,=0 (2.24)

The inertial coupling between surge and the pitching of each barge leads to the following

expression for the off-diagonal surge-pitch matrix elements:
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—(mi‘mc +A +m. + Al-lpm‘. )

I'lburgq ‘phle
L. +L inge
{[ cosl[6, (t)]+————‘b“""‘ = 5 sin[8, (l)]}

1.i+2

(Lo + Liiage) Sinl6,__ (0]

mn. +m. + ,
Z( Jrarge +A['Ibarg¢j ’ Jplate Al'[plazj)

J=i+l

i=12..N (2.25)
The element on the diagonal of the inertial matrix corresponding to the heave of the system
is

= ; ; 22
L, Z:(m,mc + A, Staree, + mlpm= +A; 3”“) (2.26)

=1

The inertial coupling between heave and the pitching of each barge leads to the following

expression for the off-diagonal heave-pitch matrix elements:

[2'&2 = —(m + A Suarge, + mim + A, 3 e,
Li + Lhin e
{i’)_ os[8 ([)] + Z;sin[6, (z)]}
(Liw llum) cos[G (t)]

N

Z (m e + A, Brse, +m e + A, 3 piae, ),
J=i+l

i=12,..,N 2.27)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. EQUATIONS OF MOTION 30

The diagonal pitch inertia matrix elements are

L, +L. .\
_ frarge hinge 2
Lirpn = Jiw tAs S T (”’imc + Ay, ) {( 2—) *+ Lharge, | T

L. +L,.  \°
Etate hinge )
Jiplalc 145'5pla‘:x + (,niplale + A‘-lpkxe‘-) [( o) ) + 'P[["ex +

N
2 2
Lyjnge)” cos”(6, _(1)] Z (m e T R85, T M A me,) +

j=itl !

N
2 02
(Limc + Lyjnge)” SIN [Hiungc([)] Z (m e +A1_1m‘j +mp. +A1-1,,m,-)'

J=i+l

Ly

i=12..,N (2.28)

The inertial coupling between the pitching of the barges leads to the following expression

for the off-diagonal pitch-pitch matrix elements:

z

i+, j+2

= (Li_ + Lyinge) c05[6,,_()]

(("ljbnx * A3'3Lurge + ’njplatc + A3'3plazj )

Lj +Lhinc
{"“‘g‘—q— cos[d, ()] —¢;sin(d;, (r)]}

N

E (m +A +m ) Lj'”'“ * Loinge (6, « )])
S 144 _—

P Lbargc 33 barge;. Lpl:nc 3 3 plater. 2 cos (

c=j+1

(L hmac) sm[9 (t)]

m, +m, +A
(( Jbargc l Ibargel Jpl:nc ]'"‘pldzl)

+ L.
{g cos[9 ([)]+J"“‘°—msm[9 (z)]}

N
LZI (nlkm 1 Lirger + ’nkpmc + A[-lplaek)
t=j+
L. +L,.,
MSIH[Q ([)]) i=12..,N, j:i-{-]_'”.'N (2.29)
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The inertial matrix is symmetric, therefore, equations (2.23) to (2.29) completely specify

the matrix.

2.4 Summary

This chapter has described the formulation of the equations of motion for a generic hinged-
barge system. In the following chapter, the external forces in these equations of motion

will be described, and methods for the calculation of these forces are shown.
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Chapter 3

External Forces and Moments

In this chapter the external forces and moments on the hinged-barge system are character-
ized. The external forces and moments include gravitational attraction and hydrodynamic
forces. The hydrodynamic forces are separated into viscous and inviscid forces, and the

inviscid force is further decomposed into buoyvant, radiation, and scattering components.

When the body and the water are in motion, one can approximate the inviscid hydrody-
namic force as the combination of the buoyant force (the buoyant force that would act on
the body if the body and the incident waves were fixed in time), the forces due to the body’s
motion, and the forces due to the water’s motion. The buoyant force is the force that the
water would exert on the body if the water and the body were not in motion. Note that this
does not mean that the water is at the calm-water-line; the hydrostatic pressure is calculated

as if the incident waves were fixed in time. The radiation force is the force on the body due
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to the oscillation of the body in the absence of incident waves. Scattering is used here to

describe the force on the body as it is held fixed in the presence of incident waves.

Also included in this development are the hinge moments. Aside from the (usually small)
friction at the hinges, hinged-barge systems could have a variety of types of hinge mo-
ments, depending on the application. For example, ocean wave-energy conversion systems
(like the McCabe Wave Pump (MWP) system) would have some sort of energy extraction
devices at the hinges, like piston-driven hydraulic pumps. Hinged-barge systems designed
for stability [such as the Mobile Offshore Base (MOB)] might have damping devices at
each hinge to dissipate kinetic energy. Furthermore, either type of system might use an
automatic control system at the hinges; by controlling the hinge moments with a feedback
loop, the energy absorbed by the system could be maximized for the MWP or, for the
MOB, the pitching motions could be minimized. Because the moments at the hinges are an
active part of many types of hinged-barge systems, they are treated here as external to the
hinged-barge system. The hinge {orces, on the other hand, result simply from the fact that
the barges are hinged together, and so are treated as internal to the system and eliminated,

as demonstrated in Chapter 2.

Motions during which the barges’ bottom surfaces leave the water would lead to extremely
non-linear “slamming” forces as the barges re-enter the water (sec, for example, the study
by Ochi and Motter [41]). Although Figures 2.4, 2.5 and 2.6 show exaggerated displace-

ments of the barge/plate units for clarity, such extreme displacements are not expected to
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occur. Hinged-barge systems are designed to avoid large displacements; even wave-energy
conversion systems such as the MWP are designed to avoid energy-dispersing slamming.
Furthermore, the MWP is designed to have a “safe-mode” in which the hinges are locked,

minimizing the system’s motions during extreme storm waves.

Each of the external forces and moments are estimated and substituted into the system
equations of motion, equation (2.2), written in matrix form for convenience. Then, as
shown in Chapter 4, the values for the coefficients and external forces of the matrix equation

are estimated, and the motion of the system can then be simulated, as in Chapters 5 and 6.

3.1 Viscous Force

Section 5.4.2 details how the viscous forces and radiation damping forces are evaluated
in the analysis of the scale-model experiments. [n other cases where such data are not
available, such as for prototype-scale simulations, the viscous forces on the plates are ap-

proximated by the following equation:

-

1 ” o
—CD :):p ::i([)- Lpl(ue‘-B lateik 3.1)

F;irag‘ = p

where C, is the coefficient of viscous drag, L, is the length of the i-th plate, and B,
is its beam. The drag coefficient is found from Hoerner [18]. This formulation for viscous
drag is not strictly appropriate, since it is for steady flow at a fixed Reynolds number, Re

[which implies a fixed plate velocity, z(z)]. However, for the range of Reynolds number
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Re > 10°, the drag coefficient is essentially constant. Since the Reynolds number for the
flow around the plate falls in this range for the great majority of the time for the systems

studied herein, this is an appropriate approximation.

3.2 Gravitational Attraction

The first external force on the system is due to gravity. Referring to the free-body dia-
gram for each unit (Figure 2.4 in the previous chapter), gravity contributes to the vertical
components of both the barge and the plate. Thus, considering only the contribution of
gravity,

=-m, g (3.2)

j barge. J barge

and

~m g 3.3)

j plate j plae

where g 1s the magnitude of the acceleration due to gravity.

3.3 Buoyant Force

The water exerts a force on the barges due to the hydrostatic pressure of the water. This is
easily thought of as the buoyancy force. When a body is floating freely at rest, the buoyant

force is equal and opposite to the gravity force.
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The buoyant force contributes to the external forces on the barges, but not the plates. The

plates are fully submerged, and since they have no significant thickness, the buoyant force

contributes no net force on them.

The net buoyant force on each barge is obtained by integrating the normal component of

the static pressure around the wetted surface of the body. For barge i, this means that

FE)MO_\‘HIUM“‘, == f L p buay(mr(S) fl dS (3 ‘4')
Bl

where S is the wetted surface of barge 7, py,y,q,(S) is the buoyant pressure on the surface
of the body (the pressure if the wave and the body were fixed in time, so that dynamic
effects are not included), and 7 is the unit-vector normal to the body surface (pointing

outward (rom the body). The buoyant pressure is
Pbuoyand(S) =P § I(S) 3.5)

where /i(S) is the height of the water column above the point on the surface of the body at

a particular moment in time.

3.4 Scattering Force

The scattering force is the force on the body as it is held fixed in the presence of inci-
dent waves. Scattering describes the alteration of the wave field by the presence of the
(stationary) body, including diffraction and reflection effects. Section 4.5 describes how a

boundary-value problem is solved to calculate the scattering force.
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3.5 Radiation Forces: Added-Mass and Radiation Damping

The radiation forces are the force on the body as it is oscillated in otherwise still water.

Section 4.6 describes how a boundary-value problem is solved to calculate the radiation

forces.

3.5.1 Fluid Effects on a Linear Oscillator

When analyzing the dynamics of a body floating in water, complicated hydrodynamic
forces become involved. However, a physical sense can help to simplify the problem so
that it becomes tractable. The fact that the body makes waves that radiate away from itself
is obvious. Surface waves transport energy, and energy loss is associated with damping in
simple systems. This type of damping is, then, known as radiation damping. Less obvious
is the fact that some of the water moves with the body as it oscillates; in order to oscillate a
particle, a force must overcome the particle’s inertia. The measure of the water’s inertia that
is added to the body’s inertia is called the added-mass. Mathematically, it becomes con-
venient to treat the hydrodynamic force as the sum of inertial and damping forces. These
forces are expressed in terms of the added-mass and radiation damping coefficients. This

technique can be illustrated by examining the simple case of a mass oscillating in water.

Consider the idealized system of a body of mass m connected to linear spring and a linear

damper as in Figure 3.1. This is the familiar single degree-of-freedom (SDOF) damped
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m & _Tx,f

Figure 3.1: Linear single degree-of-freedom oscillator system.

linear oscillator, the motion of which is described by a linear ordinary differential equation

of motion,

mx(r) + cx(z) + kx(r) = f(1) (3.6)

where x(r) is the magnitude of the displacement of the body, and ¢ and & are the damping
and restoring force coefficients, respectively. This is simply a statement of Newton’s law
of motion, where the damping and spring forces have been moved over to the left hand side
for mathematical convenience since they involve x and its derivative. Therefore, f(7) is the
magnitude of the sum of the external forces on the body excluding the damping and spring

forces.

If the system is such that

c —4mk < 0 3.7

then the it 1s called a subcritically damped, or underdamped, system. If the mass is given an

initial displacement and set free of external forces, it will oscillate about its rest position.
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Theoretically, the amplitude of the oscillations will decay exponentially as long as ¢ > 0.

Most dynamic systems of interest are subcritically damped, so this case will be considered

exclusively.

Equation 3.6 holds as long as the inertial, damping, and restoring forces are linear. Large-
amplitude oscillations, for example, lead to drag forces that are more closely approximated
as proportional to the square of the speed of the mass. This nonlinear force can be approx-
imated by a linear force by using the method of equivalent linear damping. In short, the
linearized damping coefficient is chosen so that over one cycle of oscillation, the linearized

damping force does the same amount of work as the nonlinear damping force.

If the mass is moving in air, the air exerts some force on the body. However, for most cases,
the magnitude of this force is small compared to each of the terms on the left-hand side of
the equation of motion: the inertia of the mass, the system damping force, and the spring
force. Therefore, air resistance is typically neglected. If the fluid that surrounds the body is
water (with a mass density that is approximately three orders of magnitude greater than that
of air), the dynamics change significantly. In this case, the hydrodynamic force is typically
of the same order as the other forces.

As the body accelerates, it accelerates the water particles around it. In order to do this, the

body must exert a force on the water around it, and therefore the water exerts a reactive

force on the body. This force is proportional to the acceleration of the body. Again, this
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force is moved to the left-hand side of the equation, so that
(m + a)x(t) + cx(t) + kx(2) = f(@) (3.8

Here (m + a) is called the virtual mass and a the added-mass; the body appears to have
increased in mass since any external force must accelerate the surrounding water along
with the body. Added-mass has been described as the mass of the water that is accelerated
by the body’s motion. This might be misleading, however, because the acceleration of the

fluid in the neighborhood of the body varies continuously in magnitude and direction.

As a body moves, the viscosity of the water causes energy to be dissipated from the body.
Ideal inviscid flow theory predicts that for a body moving at constant velocity, the pressure
on the front of the body equals the pressure over the back side, resulting in zero force. This
is know as D’Alembert’s Paradox. Real viscous flow exhibits a pressure imbalance that
results in a drag force in the opposite direction of the motion. The magnitude is generally
a nonlinear function of the body’s speed. For the cases of interest here, the viscous forces
are assumed to be much smaller than the other forces in the equation of motion and so they

are not included in the barge equations of motions.

[f the water in which the body moves has a free surface, another significant energy dissi-
pation phenomenon must be included. As the body translates near a free surface, it creates
waves which radiate away from the body. These waves carty energy from the body; so,
there must be a force on the body associated with them. This force is found to be pro-

portional to the velocity of the body, so it too is moved over to the left-hand side of the
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Figure 3.2: Phasor diagram.

equation of motion. Thus, the equation of motion becomes
(m + @)X (1) + (¢ + PX() + kX(r) = f(1) (3.9)

The radiation damping coefficient, r, effectively increases the damping of the system.

Phasor Representation

For a system oscillating in a steady-state condition, the phasor is a useful method of rep-
resenting the forces and motions. It has most widely been used in electrical engineering
applications. For the SDOF system, one can write the displacement of the system in com-

plex exponential form, so that

x(t) = Re {Ae™'} (3.10)
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where i = V—1, A is the amplitude, and w is the angular frequency. This can be visualized

as a phasor, which is a vector rotating in time about its origin in a complex space (see

Figure 3.2). The complex space, 2 = x + iy, is formed by real and imaginary axes; the

displacement x(z) is the projection of this vector onto the real axis. Since it makes an

angle wr with the positive real axis, the vector moves clockwise around the origin as time

progresses. The respective magnitudes of the velocity and the acceleration, in this notation,

are obtained by differentiating as
X(7) = Re {Aiwe™}

and
X() =Re {_Awleiw}
Using trigonometric identities, one can show that
[ = w3

and
_ elml - ei(wt-wr)

Therefore, the expressions in equations (3.11) and (3.12) can be written as

(1) = Re {Awe™@+ 7}

and

X(1) =Re { Aw? ei(wr-wr)}
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Figure 3.3: Displacement, velocity, and acceleration phasors shown with hydrodynamic
force.

The phasor representation makes it easy to see that the velocity is 90° out of phase in leading
the displacement, while the acceleration is 180° out of phase ahead of the displacement (see
Figure 3.3).

Using the phasor representation, we can identify the added-mass and radiation damping
without distinguishing between the physical causes of these forces. The steady-state hy-
drodynamic force on the oscillating body will oscillate at the same frequency. However, it

can be out of phase with the displacement by an angle, ¢, so that
f(t) = Re {Fe"“*9} (3.17)

where F' is the amplitude of the force. This hydrodynamic force is also shown on the

phasor diagram in Figure 3.3. This figure illustrates that the hydrodynamic force can be
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separated into two components, one in-phase with the velocity, the other in-phase with the

acceleration.

Now rewrite f(¢) as the product of ¢** and a complex amplitude F = e, so that
f(@) = Re{Fe™*} (3.18)
Substituting equations 3.10, 3.11, 3.12, and 3.18 into equation 3.9,
Re {fn(—wl)Ae"“” + CiwAe™ + kAei“”} = Re {Fe[“” } (3.19)
By dividing each side by Ae™*, we obtain an algebraic equation,
—wm+iwc+k=F (3.20)

Finally, F is separated into its real and imaginary components and moved to the left-hand

side, leaving a homogeneous differential equation:

—w? (m + R:C{;}) + iw (c - I—‘%—{f—}) +k=0 (3.21)

Referring back to the equation of motion [equation 3.9], we can identify the added-mass,

_ Re{F}

a= 5 3.22
S (3.22)
and the radiation damping,
Im{F}
b=~ 2
v (3.23)

The added-mass and radiation damping are the two components of the hydrodynamic radi-

ation force.
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3.6 Mooring force

Mooring forces are accounted for in the model by a linear horizontal restoring force.

F‘l = —kmooring X([ )] (3-24)

mooring

where &

mooring

is the mooring restoring force coefficient.

3.7 Hinge moments

The hinge moments are approximated by a linear rotational damping moment at the hinge,

so that

Mj.j-l = _Clu'nge I:gjmz([) - gj_lh.vge(l)] L, =2, UN (3.25

where ¢, is the hinge damping coefficient.

3.8 Summary

In this chapter, the external forces on the hinged-barge system have been described. These
forces include the gravitational, viscous, buoyant, radiation, scattering, and mooring forces,
and the hinge moments. [n the following chapter, a method is described for calculating the
radiation and scattering forces by numerically solving the corresponding boundary-value

problems.
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Chapter 4

Source/Panel Technique

In this chapter, a technique is described for solving for the forces on an arbitrary body in
regular waves. The fluid flow is modeled as a potential flow, which simplifies the problem
greatly and allows the superposition of solutions. The analysis is in two parts. The first
results in a solution of the “radiation problem” for each of the degrees of freedom of the
body’s motion. The second part of the analysis results in a solution for the forces of the
incident waves upon the body as it is held fixed (called the “scattering problem” herein).
The body surface is discretized into small panels, so that the boundary-value problems can
be solved for arbitrarily shaped bodies. Once the fluid flow is solved in each of these cases,

the forces upon the body can be found.
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4.1 Potential Flow

Fluid flow problems can be simplified greatly by formulating them as ideal potential flow

problems. Assume that the flow is irrotational so that, by definition, the vorticity is

=Y

¢ xU =0 4.1)

o)
]

where U is the fluid velocity vector, and the operator V is defined as

V= %M 5;} + 8%[: 4.2)
where 1, J, and k are the unit vectors of the cartesian coordinate system. The fluid is also
assumed to be incompressible, so that %‘t’- = 0, where p is the fluid mass density. The
continuity equation for incompressible flow expresses the law of conservation of mass for

the fluid; that is,

V-U=0 (4.3)
where U is
Ux, VI)=ul+vj+ whk (4.4)

Because of the assumption of irrotational flow, a potential function ® can be defined such

that

U=-Vo (4.5)

Substitution of U from equation (4.5) into the continuity equation [equation (4.3)] vields

the Laplace equation,
>’ 0 PP &P

2 2 2 =0 4.6
a2 T ar T oz (4.6)

ﬁz(b =
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which ® must satisfy evervwhere in the fluid domain. This is the governing equation for

the hydrodynamic boundary-value problems.

4.2 Body Response in Regular Waves

Linearity allows one to break the problem of solving for a body’s response in regular waves
into two sub-problems: first, the body is held fixed in the presence of the incident waves;
second, the body oscillates in otherwise still water. Again, because the problem is linear,

one can treat independently the body’s oscillations in each of its six degrees of freedom.

The first sub-problem involves solving for the loads on the body when it is restrained from
motion in the presence of incident waves. These wave excitation forces on the body consist
of Froude-Kriloff forces and moments, which are due to the undisturbed incident wave, and
scattering forces. [Note: These are often called diffraction forces. “Scattering” is used here
to avoid confusion with the phenomenon of wave diffraction, which is the transfer of energy
perpendicular to the direction of wave travel. Here, scattering describes the alteration of
the wave field by the presence of the (stationary) body, including diffraction and reflection
effects.] The second sub-problem involves solving for the forces and moments on the
body when it is oscillated at a (wave) frequency in the absence of incident waves. The
oscillating body radiates waves on the free-surtace. The resulting hydrodynamic loads are

called inertial and radiation damping forces and moments.
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The velocity potential corresponding to each of these sub-problems is solved for indepen-
dently, and the potentials are added together to obtain the complete solution for the body
oscillating in incident waves. This is possible because of the principle of superposition by
which solutions of linear equations can be added, with the result being a particular solution.
In the radiation problem, each of the six rigid-body modes of motion is solved for sepa-
rately. The incident wave potential is @, the radiation potentials corresponding to each of
the six degrees of freedom are (@, g = 1...6), and the scattering potential is ®;; together,

these form the potential for the complete problem. That is,

[
O=By+ > D+, (4.7)

q=1
To facilitate the analysis, the temporal and spatial dependencies of the potentials are sepa-

rated. A potential function, ¢ j(.'\?), which is independent of time, is defined as
@ ,(%;7) = Re {# ,(X)e™"} (4.8)

attime, I, at a point in the fluid domain, X = (x, y, ), and where j = 0...7.

4.3 Boundary Conditions

The complete boundary-value problem is determined by requiring the potentials for the
scattering and radiation problems to satisfy the Laplace differential equation (4.6) in the
fluid domain, subject to boundary conditions on the surface of the fluid domain. The bound-

ary surfaces consist of the free-surface, the submerged surface of the body, the sea bed (for
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Figure 4.1: Two-Dimensional Schematic of Fluid Domain Boundaries.

finite depth), and a vertical cylindrical surtace surrounding the body at an infinite distance
from the body. Figure 4.1 provides a two-dimensional schematic of the boundary surfaces

of the fluid domain.

4.3.1 Kinematic free-surface boundary condition

Referring to the sketch in Figure 4.1, on the free-surface of the fluid, S, there are two
boundary conditions. The first is the kinematic condition that particles on the surface re-
main on the surface. The free-surface can be defined by z = n(x, y; 7). In order to obtain the

kinematic free-surface boundary condition, introduce the function

E(x,y,z30) = n(x, y;1) — 2 (4.9)
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which is an artifice. Then, for a particle on the surface, the value of E should remain

constant, equal to zero.
The total (or substantive) derivative DE/Dz gives the rate of change of the quantity E as

a particle is followed. This includes the local derivative, dE/dt, which is the time-rate
of change at a fixed point in space, plus the convective derivative, U - VE, which is the
change due to the particle’s motion through space. Special cases are useful to (physically)

illustrate the total derivative. First, consider the steady-state flow in the nozzle of a subsonic
wind tunnel; here, the local acceleration is zero (since the flow is steady-state) but the
convective acceleration is nonzero, since the flow velocity changes from point to point in
the contracting tunnel. Second, consider the inviscid flow of water in a vertical cylinder
of uniform radius driven by an oscillating piston at the bottom. In this case, the local
acceleration is nonzero as the piston oscillates. However, the convective acceleration is

zero since the fluid velocity is the same everywhere at any instant in time, barring viscous

effects.
Setting the total derivative equal to zero, the kinematic free-surface boundary condition is
DE OFE . -
—=—+U-VE=0 (4-10)
Dt or on z=n(x,y)
or
o oba oP I oo
on  9Pon  gmon 9% _, (4.11)
ot 0dxdx dydy 0z on z=(x,y.)

PS

i o
SINCE Z- | on z=nleyr)
This equation is the kinematic free-surface boundary condition; the kinetics of particles on
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the free-surface are examined in the next section.

4.3.2 Dynamic free-surface boundary condition

The second free-surface boundary condition is the dynamic condition that the pressure at
the free-surface be equal to the constant atmospheric pressure p,. To relate the pressure to
the velocity potential, one can use the unsteady, irrotational form of the Bernoulli equation.
Bernoulli’s equation is an expression of the law of conservation of energy in an ideal fluid;

it states that

a@ - -
p+pgz+pa + 2.0 =c (4.12)

where C is uniform in space but may be a function of time. Substituting for U from equa-
tion (4.5) and applying the equation to a point z = n(x, y, ) on the free-surface, the expres-

sion in equation (4.12) becomes

a0 p[rodV (20 [0\

on IZ=7(x.v.0)

The boundary condition imposed by equation (4.13) must hold in the limiting case of calm
waler. In this case, the fluid velocity approaches zero, the velocity potential becomes con-
stant in time and space, and the free-surface displacement, r(x, y, t), approaches zero. This

simplifies equation (4.13) so that

P = C(2) (4.14)

The atmospheric pressure is taken as a constant which is, in terms of gauge pressure, equal
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to zero. Therefore,

po=C)=0 (4.15)
Thus, the dynamic free-surface boundary condition is

g +£99+i (@)2+(8—®)2+(@)2 =0 (4.16)
ST+ 3 "3\ ax Ay o) | ’

on z=n(x.y.f)

4.3.3 Linearized free-surface boundary condition

Both the kinematic and dynamic boundary conditions [equations (4.11) and (4.16)] are non-
linear. The position of the free-surface boundary is not known (see Faltinsen [5]). However,
using a Taylor series expansion one can transfer the free-surface conditions from the actual
free-surface position z = n(x, y, 7) to the mean free-surface at z = 0. The non-linear terms

are assumed to be much smaller than the other terms, and the kinematic condition becomes

on 0D

SL_"_ =0 4.1
or 33 on z=0 ( 7)
and the dynamic condition becomes
oo
— =0 4.18
8n+ 3 a0 (4.18)

Differentiating equation (4.18) with respect to 7, solving for dn/dt, and substituting into

equation (4.17) vields the combined linearized free-surface boundary condition, which

states that

o 3P

on =0
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Finally, for harmonic motion with frequency w, this can be simplified, so that

s 22 0 (4.20)

S A
oz on z=0

which is the linearized free-surface boundary condition.

4.3.4 Body boundary condition

The body boundary condition requires that the normal velocity of the body be equal to
the normal velocity of the fluid at the submerged surface of the body, S;. Physically, this
means that there can be no flow across the body surface. [Note that tangential slipping
of the fluid is allowed. In real (viscous) flows, the fluid’s tangential velocity also goes to
zero at a solid surface. The potential flow solution will not predict a boundary layer, and is
useful for flows in which vorticity and boundary layer effects are relatively insignificant.]

Mathematically, the body boundary condition is

IOt - N
9O _ sy a0 (4.21)
a” X on Sy

where #1 1s the surface’s outward unit normal vector, d/dn denotes the derivative in the
direction of A, 3(¥;1) is the vector displacement of point ¥, and 3(¥; 7) is the velocity.

4.3.5 Sea bed boundary condition

For water with a uniform depth /4, the sea bed boundary condition requires that

adO(x;1) _0 (4.22)

Bz on z=-h
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at the sea bed surface.

4.3.6 Far-field radiation boundary condition

The far-field radiation boundary condition holds that waves radiated away from the body

must diminish with the radial distance r = y/x*> + y* from the body, or

lim|Tl=0 (4.23)

r—co

This defines a boundary surface at infinite distance from the body, S, .

4.4 Floating Body Kinematics

In order to implement the body boundary condition, one must be able to express the velocity
of a particular point on the body in motion. In this section, the coordinate systems used
in describing the motion of a single rigid body in water are defined. Also, a method is
presented for describing the motion of a point on the body in terms of the motion of the
body itself. Section 4.2 explains that the motions of [he‘ body in each of its six degrees of
freedom can be treated separately; this greatly simplifies the description of the motion of
a point on the body. The Kinematics presented in this section are used to express the body

boundary condition presented in Section 4.3.4.

The coordinate system for the description of the motion of a single rigid body in water is

shown in Figure 4.2. Two inertial cartesian coordinate systems are shown in Figure 4.2.
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Figure 4.2: Coordinate System Definition.

One system’s origin is on the calm-water plane directly above the center of mass of the
body’s rest position; 1, 7, and k are unit vectors, the x- and y-axes lie on the calm-water
plane, and the z-axis is perpendicular to the calm-water plane. The other system’s origin is
at the center of mass of the body’s rest position. 1,7, and K are unit vectors; the X- and
Y-axes lie on the plane which contains the body’s center of mass at rest and is parallel to the
mean (calm-water) free-surface, and the Z-axis is perpendicular to the mean free-surface.

The calm-water plane intersects the body at the still waterline, shown in Figure 4.2 as SWL.

4.4.1 Rigid-body motion

In general, a rigid body has six degrees of freedom in three-dimensional space. The dis-

placements in the directions of the X-, Y-, and Z-axes are surge, sway, and heave, respec-
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tively. The rotations about the X-, Y-, and Z-axes are roll, pitch, and vaw. In order to
describe the motion of a point B shown in Figures 4.3 through 4.5, a third coordinate sys-
tem is defined; this hull coordinate system is non-inertial, because the X; -, ¥, ,y--and Z -
axes translate and rotate with the body. In this coordinate system, the point B is located at

Xoutt = (XhullB' Yhulls' Zhu[lg)’

As mentioned previously, only X-Z planar motion is treated, so the system has three degrees
of freedom: surge, heave, and pitch. The description of the displacement of the body is
shown in Figures 4.3, 4.4, and 4.5, where the displaced body is drawn with solid lines,
while the mean (undisplaced) position of the body is shown with dashed lines. The surge,
heave, and pitch of the body are assumed to be harmonic, and are represented by ¥,» Where

q =1,3,5 Thatis,

n(@ = Refl, e} (4.24)
%) = Re{l;e™) (4.25)
Y1) = Re{[;e ™} (4.26)

where 7, () is either the magnitude of the displacement vector or the displacement angle
corresponding to the g-th degree of freedom, and I, is the amplitude of the g-th displace-

ment.
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Figure 4.3: Rigid-Body Surging Displacement.

4.4.2 Displacement of a point on the body

The displacement of a point on the body, 3, can be expressed as the sum of displacements

corresponding to each of the body’s degrees of freedom, so that

S (X3 ) =
q

6
sq(Xhuu; 9] 4.27)

=1

where g = 1...6 corresponds to surge, sway, heave, roll, pitch, and yaw, respectively. Note

that, for example, §1()?huu; 1) is not the surge of the body; rather, it is the vector displacement

of the point Xhull due to the surge of the body.

The displacement of a point on the surface of the body, Iv'q()-("huu; 1), can now be related to the
displacement the body, v, (¢). Referring to Figure 4.3, the surge displacement of the body

simply causes horizontal displacements of each point on the body. Thus, the displacement
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Figure 4.4: Rigid-Body Heaving Displacement.

of point B as the body surges a distance v, is
3 (Kpus D) = RO (4.28)

Similarly, Figure 4.4 shows that heave displacement of the body results in vertical dis-

placement at X, ;. Thus,

3&as 1) = BOK (4.29)

As the pitch angle of the body [4(7)] changes, point X, , is displaced both horizontally and
vertically (see Figure 4.5). As the body pitches, the point on the body moves from B to B’

through displacement 5. In terms of the inertial (X, Y, Z) coordinate system, the position
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Figure 4.5: Rigid-Body Pitching Displacement.

vectors of points B and B’ are

~ ~

X, = Xty + Zpun, K (4.30)
X, = Xy, COS(s) + Zyyy, Sin(ys)) +
[Zyun, ©OS(75) = Xpy, SIN(y5)IK (431)

The displacement of this point is

3.=X, - X, (4.32)

Substituting from equations (4.30) and (4.31), one finds that

55 = (X, lcos(y) = 11+ Zy, sin(ys)} +

{Zyun, [cos(ys) = 1] = Xy, sin(ys)iK (4.33)
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4.4.3 Velocity of a point on the body

The velocity of a point on the body is found by taking the derivative with respect (o time.
Taking the denvatives of equations (4.28) and (4.29), respectively, the surge and heave

velocity vectors are

31K 1) = 10T (4.34)
and
35X t) = BOK (4.35)

Similarly, the pitch velocity is found by taking the time derivative of equation (4.33). That

s,

355 = (=X, SICY)Ys + Zyyy, cos(ys)ys1 +

[~Zyun, SINCYs)Ys = Koy, cos(ys)¥51K (4.36)

Note that, because the (X, . Your Zoa) coordinate system moves with the body, the time

derivatives of X, and Zhull are zero.

For small pitch angles, sin(y;) = s, and cos(y;) = 1. Therefore, equation (4.36) becomes

55 = (= Xgun, YsYs + Zpa, V) +

(=Zpun ¥sYs = XhuuBYs)f{ (4.37)

Finally, this equation can be further linearized by assuming that the product of the small

angle and the angular speed, y57s, is a second order term and much smaller than the other
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terms. Thus,

35 = Zhuu,js7 - Xhuus'ysf{ (4.38)

5

4.4.4 Normal velocity of a point on the body

For conciseness in expressing the body boundary condition later in the analysis, define

Vq()?hu"). q =1, ..., 6, so that the right-hand side of equation (4.21) can be written as
3,80 - A®) = v (X,,) Re {—iwl e} (4.39)

where, again, 1 = (1, n,, n_) is the surface’s outward unit normal vector.

Taking the time derivatives of equations (4.24) through (4.26) and substituting them into
equations (4.34), (4.35), and (4.38), respectively, vields expressions for the velocity ?Q(}?hull; 1)

of a point on the body in terms of the amplitude of the body displacement, [ . That is,

3,50 = Re{-iwl| e™™}] (4.40)
(1) = Re{-iwl;e™}K (4.41)
30 = Re{~iwlse ™} (Zy ] — XKD (4.42)

Subsituting these equations into equation (4.39) and taking the dot (scalar) product, the
normal velocity components at a point }?hu" at time ¢ due to surge, heave, and pitching

motions, respectively, are

i = n Re{-iwl e} (4.43)

e

t
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= n_ Re{-iwl; e} (4.44)

S
=

b
=
Q

S5 - (Zyan e — X 1) Re {—iwl5 e} (4.45)

So, comparing the previous three expressions with equation (4.39), v, is such that

&) = ) (4.46)
V) = 1K) (4.47)
Vi) = Zpu 1K) = Xy n:(‘)?hull) (4.48)
More concisely,
(V. Vp V) =1 (4.49)
and
(vy, Vs, V) = :hu“ X it (4.50)

Equations (4.49) and (4.49) prove useful in solving the radiation problem, in Section 4.6.

4.5 The Scattering Problem

The scattering problem involves solving for the forces on the body as it is held fixed in
the presence of incident waves, as described in Section 4.2. There is some disagreement
in the literature regarding the definition of scattering. The term “diffraction” is often used
to describe the effect of a fixed body on the incident waves. However, the phenomenon

of wave diffraction is more precisely the transfer of energy perpendicular to the direction
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of wave travel that occurs in the lee of a body. Therefore, the term “scattering,” which is
commonly used in acoustics literature, is used here to avoid confusion. Here, scattering
describes the alteration of the wave field by the presence of the (stationary) body, including
diffraction and reflection effects. Mathematically, both of these effects are part of the same

boundary-value problem; so, it is logical to include them in one description.

The governing equation of the scattering boundary-value problem is Laplace’s equation
(4.6). The boundary conditions are the body condition of equation (4.21), linearized free-
surface condition of equation (4.20), sea bed condition of equation (4.22), and far-field

radiation boundary condition of equation (4.23), all defined in Section 4.3.

Since the body is held fixed for this part of the analysis, the body boundary condition
requires that, on the body surface, the fluid velocity normal to the body surface must be
zero. The fluid potential in this case consists of the incident and scattering potentials, @,

and ., respectively, so

0[P 1) + D,(550] _ 9 B(1) 0 8,(50) _ (4.51)
on on on %on Sp
or
O Q;(151) _ 0 Py(X50)
_ 4.52
on on X on S ( )

where n is the outward normal coordinate. The normal unit vector, t = (n,n,n.), is
aligned with n. The physical meaning of equation (4.52) is that there is no fluid flow
through the solid body; the normal component of the fluid velocity due to scattering must

cancel the normal component of the undisturbed incident wave fluid velocity at point X on
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the surface of the body. One can separate the spatial dependence of the potential functions

[see equation (4.8)], so that the boundary condition of equation (4.52) becomes

99,(3) __99y®)

on on L on S (4.53)

Linear wave theory, first formulated by Airy [2], predicts that the incident wave potential

function is

- gH coshlk(z + )] .- ,)}

O, (x;1) = Re{=— ————————= "¢ 4.54

o(¥; 1) = Re { 2w  cosh(kh) ¢ (-54)
or, factoring out the time dependence [see equation (4.8)],

o) = SE COSKCE+ ] g 455

2w  cosh(kh)
for a planar travelling wave on the surface of a body of water with finite depth. The wave-
crests move in the +x direction as time progresses. Using the chain rule of differentiation,

one obtains the normal derivative of the incident potential on the body, which is

Op, Opy0x Opy0y O, 0z
- b =z = 4.56
on _ ox on dy On " 0z on (4.56)

Equation (4.55) shows no dependence of ¢, on y. The direction cosines can be used to
simplify the previous equation, yielding

on ""a * n:a—z
The combination of equations (4.55) and (4.57) vields

9¢y(%) _  gHk
on 2w cosh(kh)

ok {i cosh[k(z + A)ln, + sinh[k(z + h)]”z} [ (4.58)

X on Sg

which is the body boundary condition for the scattering problem.
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4.5.1 Solution by distribution of sources

The solution to the boundary-value problem can be represented by a source distribution
Q(s) over the wetted hull surface S;;. See, for example, Faltinsen [5]. The scattering velocity

potential can be expressed as

d,(X;1) = Re {(ﬁ.,(.'f) i } =Re { f Q,(s) G[_'\?; Z—"(s)] e~ ds} (4.59)

Sa

at the point X in the fluid domain, where 2(5) is a point on the surface of the body, as

indicated in Figure 4.7.

A Green’s function, G[X; ;f:'] e™™* is used to solve the problem. It is the velocity poten-
tial at the point ¥ = (x,y,2) due to a source of unit strength at the point E = (& x O)-
Havelock [16] gives a Green’s function satisfying the infinite depth boundary condition. A
Green’s function that satisfies the finite-depth boundary conditions shown in this section is

(see Garrison [7] or Faltinsen and Michelsen [6]

- P i 1 L
G[x; .f]e““‘” = { — 4+ —+
5 PV f“’ (1 + ko) e cosh [u(z + k)] cosh [u(¢ + )]
- 0 e sinh(uh) — kg cosh(uh)

l,’_’zz(/\2 — k2) cosh [k(z + h)] cosh [k(£ + h)] (k) }e"“‘” (4.60)
Kh — kgh + kg ° '

Jolur) du +

where J,(x) is the Bessel function of the first kind of zero order, Y, (x) is the Bessel function

of the second kind of zero order, K,(x) is the modified Bessel function of zero order. Also

in equation (4.60) are

R = G- +0-0+E-07
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RI

V-8R + 02 + @ + 07

ro= Na-2+ o —x?

and the deep-water wave number

ky =

2
w
o
S

The notation “PV™ in equation (4.60) indicates a principal value integral.

In terms of the time-independent scattering potential ¢,
60 = [ 0 6[nEw)]as (4.61)
Sa

Satisfying the body boundary condition leads to an integral equation for the sour'ce distribu-
tion over the body, which in general cannot be solved analytically. Therefore, the problem
is discretized and solved numerically. To this end, the hull surface is discretized into N
panels (see Figure 4.6), with source strength Q5. assumed constant over each panel «, so

that the velocity potential is approximately

N
6@~ 30, [ o[uEw]as “62)
=1 By

where §, identifies the surface of the «-th panel on the body. Substituting this expression
and the expression in equation (4.58) into equation (4.53), the body boundary condition for

the discretized problem is found to be
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A
K

oHk e (- _ . _
_m e* {z cosh[k(z + h)]n_ + sinh{k(z + lz)]n:} s, (4.63)

Since Q; 1s constant over panel x and does not vary in space, the partial derivative can be

moved inside the integral. Thus, the equation for the boundary condition at the centroid

= (X, ¥,.Z,) of panel ¢ is

=il

[A

N a R
Yo, f 9 G Es)] ds ~
e « SB, an
gHk

T e* {icosh[k(z, + Mln, + sinh[k(z, + min, } (4.64)

This is a linear system of equations for the complex source densities @ . In index notation,
<
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element ¢ element k¥

Figure 4.7: Panel Geometry Definition.

this system of equations can be written as

gsHk
VLA'Q7 = OH

< 2wcosh(kh) et {i cosh[k(Z, + A)ln, + sinh[k(Z, + /l)]”:‘} (4.65)

where the coefficients of the equations are

d o »
V. = f SB‘%G[,\Q,ﬂs)] ds (4.66)

Physically, V, is the normal velocity induced at .%L (the centroid of element ¢) due to a unit
source density over element « (see Figure 4.7). It is a complex number, so it contains both
magnitude and phase information. The values of V_are used in equation (4.65) to solve for

the source densities, @, .
Ls

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. SOURCE/PANEL TECHNIQUFE 70

4.5.2 Hydrodynamic forces

With the source distribution solved, one can proceed to determine the forces and moments
on the body. The unsteady, irrotational form of Bernoulli’s equation is used to find the dy-
namic pressure on the body surface. Equation (4.12) [where, as discussed in Section 4.3.2,

C(1r) = p, = 0 (gauge) for the present casel], states that

o RN
p+poz+p§+§-U-U=O 4.67)

This equation is linearized by assuming that U - U is of second order. For the scattering
problem, only the dynamic pressure is considered; so, the dyvnamic pressure due to scatter-
ing is such that

O + D))

scatter — 6[

(4.68)

By subsituting for @, and @, from equations (4.54) and (4.8), respectively, into equa-
tion (4.68), one obtains the following:

a [Re { % ks gitks—wi) } +Re {¢7 e“'“’}]

Pscatier = P = (4.69)
and taking the indicated derivatives,
Pscaner = Re {ip% e e“’“-w‘)} + Re {ipwe, e} (4.70)
This result must hold for ¢ = 0, so the equation implies that
Dscaner = RE {(ip%E e e + ipwqb.,) e-*'w} 4.71)
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since the terms inside the parenthesis are independent of time. Because the pressure will be
harmonic, it is convenient again to separate the temporal and spatial dependence. Define

the complex quantity p, .....» Which is independent of time, so that

Pscaner = Re {Pocirer €7} (4.72)
where
Pscatter = 1P 2,-_,— ek elkt + Ipw¢7 (473)

P

The generalized force (either a force or a moment, depending on €) in the e-th degree of

freedom due to this pressure is

F; == f pscauer Ve [}?hull(s)] ds (4-74)
Sp

where v, [}_E'hu"(s)] is defined in Section 4.4.4. Once again, to isolate the temporal depen-

dence, define F_ so that

F.=Re{F, e ™"} (4.75)
where
F € =- f pscaller Ve[‘?hull(s)]ds (476)
Sp

Note that, in comparing equations (4.74) and (4.76), the real quantity F_ is harmonicin time,

while the complex quantity F is independent of time but contains the phase information.

In keeping with the discretized solution, the integral over the surface of the body in the

previous expression is approximated as a sum, so that

N

F,=- Z[ scatter VE‘AS‘] 4.77)

=1
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where AS, is the area of element ¢. Finally, substitution of equations (4.73) and (4.62) into

equation (4.77) shows that the generalized force is mathematically represented by
N 2
F, =~ - Z {[ipig;— & ey
=1 =

N
fpr(Ql | oz ds]
x=1 B,

Thus, the scattering force can be evaluated for an arbitrary body in waves.

v, ASL} (4.78)

4.6 The Radiation Problem

The radiation problem involves solving for the forces on the body as it is oscillated in

otherwise calm water, as described in Section 4.2. No incident waves act upon the body.

The governing equation of the radiation boundary-value problem is Laplace’s equation (4.6),
which is subject to the boundary conditions on the body, the linearized free-surface, and the
sea bed, as well as the far-field radiation boundary condition, all defined in Section 4.3. The
fluid potential in this case consists of the radiation potentials, ®_, T = 1, 6, corresponding

to the six degrees of freedom of the body.

Since the body is oscillated, the body boundary condition requires that the fluid velocity
normal to the body surface must be equal to the normal component of the body velocity at

every point on the surface. Mathematically,

9D _ 35.p. ) (4.79)
6n X on Sg
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where the outward unit normal #t = (n,, n,, n.). The physical meaning of equation (4.79)
is that there is no fluid flow through the solid body. Substitution of equation (4.39) into

equation (4.79) vields

a D (x;1)

S = V&) Re {~iwl, e} (4.80)

X on Sg
One can separate the spatial dependence of the potential functions by replacing ®_with ¢_,

as in equation (4.8), so that

I Re o (X) e™* .
{(P;(‘ ) e = v, (%) Re {—iwl, e} (4.81)
n X on Sg
Rearranging this equation, one finds that
a :‘ —iwt R
Re {‘b—mﬁ——} = Re {—iv,(}) wI, e} (4.82)
a,l X on SB
so that
a :‘ —iwr )
_i&r(;)_e = —iv (¥) wl e™ (4.83)
n X on Sg
and
o¢. (X
9¢.(3) = —iv.(X) wl, (4.84)
on X on Sg

which is the body boundary condition for the radiation problem. See Appendix C.1 for

justification of equating the arguments of the real (Re) operator.

4.6.1 Solution by distribution of sources

The solution to the boundary-value problem can be represented by a source distribution

Q(s) over the wetted hull surface S, in the same manner as in Section 4.5.1. The radiation
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velocity potentials can be expressed as
o (x;0) = Re{ Q.(s) G[.?; Z‘(s)] et ds} (4.85)
Sg .
at the point X in the fluid domain, where z(s) is a point on the surface of the body, and

G[x; :;:'] e~%" is the Green'’s function from equation (4.60). [n terms of the time-independent

radiation potentials, we have

6,0 = | 0 G[%&0)|ds (4586)
S

Solution of the radiation problem, like the scattering problem, leads to an integral equation
for the source distribution over the body, which in general cannot be solved analytically.
Therefore, the problem is, again, discretized and solved numerically. As before, the hull
surface is discretized into N panels (see Figure 4.6), with source strength QT‘ assumed

constant over each panel «, so that the velocity potential is

N
6D =)0, f ] G|%:&s)] as (4.87)
=1 B,

where S, is the surface of the «-th panel on the body. Substituting this expression into

equation (4.84), the body boundary condition for the discretized problem is

where I', is the amplitude of the rth displacement. Since Q, does not vary in space, the

(4.88)

X on SB

partial derivative can be moved inside the integral. Thus, the equation for the boundary

condition at the centroid X, = (%, J,, Z,) of panel ¢ is

N
>e f —Lt = Jds=—iv_ ol (4.89)
< Sg 6’1 ¢
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Let O, be defined such that

= _Q
O === 4.90
=T (4.90)
and therefore,
v 9 G|%&o)]
0, f —ds =iV, w 4.91)
e AT on :

This is a linear system of equations for the complex source densities Q. . In index notation,
&

this system of equations can be written as

V.0, =—iv, w (4.92)
The coefficients of the equations are
a - =
Vie = 5-Glx,;£(s)1 ds (4.93)
Sa, on

Physically, V. is the normal velocity induced at ,-‘EL (the centroid of element ¢) due to a unit
source density over element « (see Figure 4.7). Note that the influence matrix, V,_, is the
same for both the scattering and radiation problems, since it depends only on the body

geometry. The values of V,_ are used in equation (4.92) to solve for the source densities,

ST

4.6.2 Hydrodynamic forces

With the source distribution solved, one can proceed to determine the velocity potential

and the forces and moments on the body. The linearized form of Bernoulli’s equation is
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used to find the dynamic pressure on the body surface. Comparing with equation (4.68),

the dynamic pressure due to motion in the 7-th degree of freedom is obtained from

o,
P =P (4.94)

Subsituting for ¢, from equation (4.8),

a R =it
p,=—p [ e{gtf ¢ }] (4'95)

and taking the derivative,

p. = Re {ipwg, e} (4.96)

Since the pressure will be harmonic, it is convenient, again, to separate the temporal and
spatial dependencies. Define the complex quantity p_, which is independent of time, so
that

p. =Re{p, ™"} (4.97)

where

P, = ipwd, (4.98)

The generalized force (this is either a force or a moment, depending on €) in the e-th degree

of freedom due to motion in the 7-th degree of freedom is

Fo=- f PeVe [}-fhu“(s)] ds (4.99)
S
For example, F; is the pitching moment due to heaving oscillations. Once again to isolate

the temporal dependence, define F, so that

F,=Re{F_ e} (4.100)
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or
F_=- f Pe Ve [Zou(®)] ds (4.101)
S

Note that, in comparing equations (4.99) and (4.101), the real quantity F_ is harmonic
in time, while the complex quantity F_ is independent of time but contains the phase

information.

From the discretized solution, the integral over the surface of the body in the previous

expression is approximated as a sum, so that
N

Fer = - Z [pr Ve ASL] (4’ 102)
=1

where AS, is the area of element ¢«. [Note that §, is used to identify an elemental surface,
whereas AS| is the actual area of that elemental surface.] Finally, substitute equations (4.98)

and (4.87) into equation 4.102 shows that

N N

F,=- Z {[ipw Z (Q,K f ,, OT% Es)] dsJ

This expression for the radiation force on the body will be used in the following section to

v, ASL} (4.103)

calculate the hydrodynamic radiation coefficients.

4.6.3 Added Mass and Radiation Damping Forces

As described in Section 3.5, it is convenient to express the hydrodynamic forces in the

radiation problem as coefficients of the body velocity 3, and acceleration 3,. Therefore, the
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force is expressed as

F,=-A_5 —B3 (4.104)

where A_, and B, , are the added mass and radiation damping coefficients in the p-th degree
of freedom due to oscillation in the T-th degree of freedom. The velocities and accelerations

are found by differentiating equations (4.24) through (4.26), vielding
3,(t) = Re {—iwl, ™} (4.105)
and
5.(1) = Re {-u’T, ™} (4.106)
respectively. The combination of equations (4.104) through (4.106) yields
F. =-A_Re{-’T, e} - B, Re{-iwl, e} (4.107)

In order to find the added mass and radiation damping coefficients from the potential solu-

tion, first express the force as the product of two complex exponentials, so that

F_=Re {@ei" P d } (4.108)

€T

and, comparing with equation (4.100), one finds that

@e? = F (4.109)

€T

By comparing the previous equation with equation (4.103), one finds that

N N N
Qe = _Z {[ipw Z (Q,‘ f . GIX,; &(s)] ds]
=1 B,

k=1

v, ASL} (4.110)
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Now express the exponentials of equation (4.108) as the sum of their real and imaginary

parts, vielding

F

. = Re{[Re(®e?) + i Im (®e”)] [Re (e™) + i Im (e™*)]} (4.111)
where Im( ) means the imaginary component of the argument. By expanding the product

and taking the real part, one finds that

F. =Re(©e”) Re(e™) - Im (@) Im (e™") (4.112)

€T

In order to find an expression for the added mass and damping coefficients, expand equa-

tion (4.107) into a similar form, so that

F, = A, T, Re(e™)+B,, wl,Re(ie™)

= A T, Re(e™) +
B,, wI', Re{i[Re(e™) + i Im(e~)]} (4.113)
and
F,.=A_, T Re(e™)~B_ wl, Im(e™™) (4.114)
By comparing equations (4.112) and (4.114), one can solve for the added mass and radia-

tion damping coefficients. The respective results are

Re (©e?)
= (4.115)
. w T,
and
Im (@)
B, =——1"/ (4.116)
. wl

T
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Finally, by substituting @¢” from equation (4.110), one finds that

. N N
io - '
A, =Re {—wr > [Z (Q,‘ f ,, CTaE) ds}tq AS]} 4.117)

T =1 La=1

and
. N N
—m{-F. 3.7 ,
B, = Im{ - ; [; (Q,‘ f SBKG[xL,g(s)] ds] v, AS]} (4.118)

In terms of O, [see equation (4.90], the added-mass and radiation damping coefficients are

. N N
- _p ? - ,
A, = Re{ = > [Z [Q,‘ f . G[Z,: &(s)] ds] v, AS,

=1 La=l1

} (4.119)

and

} (4.120)

N N
Be.r =Im {—lp I:Z (Qr,f G[§L;$(S)] dS) Ve‘ ASL
=1 3B,

K=l

respectively.

4.7 Scattering and Radiation Force Data

Faltinsen and Michelsen [6] used the panel method with the infinite-depth integral-form
Green’s function to calculate the radiation and scattering forces on box barges. The results
of these calculations are duplicated here. Curves are fitted to the data, and the resulting
equations are used to provide the radiation coefficients and the amplitudes and phases of

the scattering forces for subsequent simulations in Chapters 5 and 6.

Faltinsen and Michelsen calculated the radiation and scattering forces on box-barges with

a length of 90 meters, a beam of 90 meters, and drafts of either 20 meters or 40 meters. The
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surface of the barge with a draft of 20 m was discretized into 68 quadrilateral panel, while

the 40 m barge was approximated by 48 panels.

Figures 4.8 through 4.15 show the radiation and scattering force coefficients, normalized,
for both the 90m by 90m by 20m and 90m by 90m by 40m box-barges. Third-order poly-
nomial curves are fit to each plot, and the equations for each curve-fit are displayed next to

the appropriate plots.

4.8 Summary

The radiation and scattering boundary conditions are solved in this chapter, and an ap-
proximate numerical technique is presented for calculating the h}'Qrody'namic forces on the
body. These forces and the other external forces and moments described in Chapter 3 act
on each of the individual barges. In the following chapter, the external forces are used with
the system equations of motion from Chapter 2 to simulate the motion of the hinged-barge

system 1n the presence of incident waves.
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Figure 4.8: Normalized added-mass coefficients for a 90 m by 90 m by 20 m box-barge

[after Faltinsen and Michelsen [6]].
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Figure 4.9: Normalized radiation damping coefficients for a 90 m by 90 m by 20 m box-

barge [after Faltinsen and Michelsen [6]].
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Figure 4.11: Normalized scattering force phases for a 90 m by 90 m by 20 m box-barge

fafter Faltinsen and Michelsen [6]].
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Figure 4.13: Normalized radiation damping coefficients for a 90 m by 90 m by 40 m box-

barge [after Faltinsen and Michelsen [6] ].
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Figure 4.14: Normalized scattering force amplitudes fora 90 m by 90 m by 40 m box-barge
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[after Faltinsen and Michelsen [6]].
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Chapter 5

Scale-model Experiments

McCormick and Ohl [31] conducted experiments on a hinged-barge system. The system
consisted of three barges, with a horizontal plate suspended from the middle barge. It was

subjected to regular and irregular waves aligned with the long axis of the model.

The system tested in McCormick and Ohl was a scale model of the MWP system in a
wave tank. A video system was used to record the motions of the model; the videos were
digitized, and two-dimensional position time-histories were extracted from the video data.
The data were initially misinterpreted. The interpretation was corrected by this author, and

the results are analyzed herein.

[tis difficult to accurately scale the forces on a system in water waves. For example, viscous
and gravity forces scale differently from model to prototype; so, it is not practical to scale

both of these forces accurately. The approach taken here is to use model-scale experiments

90
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to check the simulation results, and then use the simulation to predict the full-scale motions.

Also, qualitative observations of the model-scale motions vield useful information.

S.1 Scaling Analysis

The purpose of scale model testing, of course, is to acquire information about the behavior
of the prototype from experiments on a more manageable smaller! model. However, care
must be given to identify the forces that are of interest in the experiment so that the proper

scaling law may be chosen.

An amusing illustration of the importance of proper scaling analysis can be seen in a scene
from the popular film, “Antz” (1998). In the scene, several ants order drinks at a bar.
The drinks are served to them as droplets, which they hold without any containers. At
this ant-scale, the surface tension of the droplet is the dominant force, overpowering the
gravitational force pulling the liquid down, so the droplets of liquid can be carried like balls.
If an ant were scaled up to human size, it might try to hold liquids without a container, with
embarrassing results. The surface tension and gravity forces do not follow the same scaling

laws.

In the case of bodies in ocean waves, gravity is the dominant restoring force that governs

the motion of the waves. Some waves, called capillary waves, have surface tension as

'Usually engineering models are smaller than the prototype, although scaling nanotechnological proto-

types to larger sizes that are more easily manipulated might prove useful.
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their primary restoring force. However, these waves are of such small wavelength as to be

insignificant on all but the tiniest scale. The Froude number governs the scaling of gravity

forces; it is the square root of the ratio of the inertial force to the gravitational force. The

Froude number is expressed as

Fr=—i

Nr7a

(5-1)

where U is a characteristic velocity and L is a characteristic length. For Froude scaling, the

Froude number is held constant from the prototvpe to the model. Using a

the prototype, an “m” subscript for the model, this scaling is expressed as

U
Fre=—>t_ - Y
,[gLP Vng

One can express the charactenstic velocity as the ratio of a length over time, so that

v =t
14 [p
and
(]lnzL—”l
I

Substitution of these expressions into equation (5.2) vields

L Ly
IP — Iy
gL, VsL,

Rearranging and simplifving, one finds that the time scale factor is
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where L, / L, is called the length scale factor. This means that if one uses a model with a

length scale factor of 1/100 (L, / L, = 1/100), then the time scale factor must be 1/10.

m
Viscous forces can also be significant in the dynamics of bodies in ocean waves. The

Revnolds number,

_pUL
==

Re 3.7)

expresses the ratio of inertial forces to viscous forces. Unfortunately, one cannot simulta-
neously match both the Froude number and the Reynolds number between the model and
the prototype, since the gravitational and viscous forces cannot be simultaneously scaled.
Therefore, one has to choose whether to accurately scale the gravitational forces or the vis-
cous forces. In any test involving ocean (gravity) waves, the gravity forces must naturally
be matched. Discrepancies of the viscous forces must also be addressed. In some cases,
small surface projections, called boundary layer trips, are added to the model! to artificially
stimulate the onset of turbulent flow. This causes the behavior of the boundary layer over
the model to match more closely the flow over the prototype, and therefore the makes the

viscous forces scale more appropriately.

5.2 Experimental setup

The 120-foot (36.6-meter) towing tank at the U.S. Naval Academy was used to subject a

model of the three-barge McCabe Wave Pump (MWP) to regular and irregular waves. Two
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resistance wire wave gauges were used to measure the wave elevations at locations upwave

and downwave of the model.

The model scale used was 1/27 (see Figure 5.1 for the model dimensions). The model
was constructed of foam with a mass density of 260 kg/m3, and was covered with flat black
enamel paint. Two reflective spheres were attached to each barge, 0.051 m above the decks.
Two reflective disks were attached to the test carriage, to provide a stationary reference for
the motion analysis system. Steel strapping hinges were used between the barges, and the
hinges were lubricated so that the hinge damping forces due to friction were negligible in

comparison to the hydrodynamic forces.

Figure 5.2 shows the model in the towing tank. The model was free to move in all degrees
of freedom, but the sway and yaw motions were negligible, since the waves approached
the model head-on. The model was kept in place by slack lines at the bow and stern of
the model, allowing the model to surge freely. Unfortunately, with certain wave conditions
(low-frequency waves with periods of 1.7 sec to 2.0 sec), the bow- and stern-lines went taut,
restricting the surge motions. This introduced severely nonlinear forces on the system, so

surge motions of the system are not very meaningful for these frequencies.

Monochromatic regular waves with periods ranging from 0.67 sec to 2.0 sec, and heights
from 0.015 m to 0.098 m were generated by the wavemaker. Additionally, irregular waves
were created, according to a JONSWAP spectrum (Hasselmann etal. [13]) [see McCormick [27]

for additional comments on the use of the JONSWAP spectrum]. The prototype design
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Figure 5.1: MWP scale-model schematic with dimensions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95



CHAPTER 5. SCALE-MODEL EXPERIMENTS 96

Figure 5.2: MWP model in wave tank.

conditions, a modal period 7 = 7 sec, and an average wave height 4 = 1.5 m, were scaled
down and used as parameters in the JONSWAP spectrum. The modal period is the period
that corresponds to the peak energy of wave energy spectrum. This scaled down to T =
1.35 sec (f = 0.74 Hz) and A = 0.056 m, using the results in equations (5.6) and (5.4),

respectively.

As the model was subjected to the incoming waves, the resulting motions were recorded by
a video camera. Ambient light was removed, and a spotlight was used; this increased the
signal-to-noise ratio, making the reflective spheres stand out. The analog video information
1s digitized for processing by computer. A two-dimensional motion analysis system deter-

mines the positions of the three barges by finding the locations of the reflective spheres
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Figure 5.3: Low-resolution sample frame of motion analysis video.

(which are the brightest spots in each frame) in each successive frame of the video data.
Figure 5.3 shows a low-resolution digitized frame of the video; the motion analysis system
used higher resolution images, with the ambient room lighting turned off to maximize the
contrast. Figure 5.4 shows a digitized frame of the video with ambient lighting turned on to
show the experimental apparatus. Note that because the walls of the wave tank are opaque,
the axis of the video camera was not perpendicular to the plane of motion of the model.
The axis of the camera was set at a small angle down from horizontal. This angle was

measured, and was compensated by the motion analysis system.

The positions of the reflective spheres were translated into pitch and heave displacements

of the central barge, and pitch angles of all three of the barges. Data files containing the
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Figure 5.4: Low-resolution sample frame of model test in ambient light.

position time-histories of the system were generated.

5.3 Analysis

5.3.1 McCormick and Ohl’s Analysis

The McCormick-Ohl data are analyzed and frequency domain information is extracted [see
McCormick and Ohl [31]]. However, analysis of the raw data does not account for pitching
motions of the inertial barge, and the displacement of the system is not uniquely deter-

mined. McCormick and Ohl describe the motion of the system in terms of the heave of the
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central barge and the two relative angles between the barges. This method is appropriate
for analyzing the energy available for power take-off, since the pumps between the barges
in the MWP are driven by the relative pitching of the barges. However, this three degree-
of-freedom description is not sufficient to completely determine the motion of the system,
even in two dimensions. Furthermore, it is not appropriate for extending the analysis be-
vond the specific ocean wave-energy pump system. Even if surge is neglected, the system
has four degrees of freedom (for example, the heave of one barge, and the pitch of each of
the three barges), one more than used by McCormick and Ohl. The raw data from these ex-
periments are reanalyzed in order to extract complete information about all of the degrees
of freedom of the system. The results of this re-analysis are presented in Section 5.4, in

which the experiment and simulation results are compared.

5.3.2 Animation

A powerful tool in the analysis of the experimental data is the animation of the motion of
the system. As detailed in Appendix D.1.3, a Mathematica program is used to translate the
time-history data into animations of the system’s motion. Figure 5.5 shows several frames
from a typical animation.

With the aid of these animations, a flaw in the experimental time-history data was dis-

covered. An error in the 2-D motion analysis program used by McCormick and Ohl [31]

resulted in heave data that were exaggerated. Figure 5.6 shows several frames from an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. SCALE-MODEL EXPERIMENTS 100

Figure 5.5: Five frames of a typical MWP animation (five frames per second, T = 1.43 s,

and H = 0.071 m).
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animation of the uncorrected data. These frames correspond to the same moments in time
as the frames in Figure 5.5. Note the exaggerated heave displacements. This error was

corrected by this writer, and the corrected, unpublished data are used herein to compare

with the theoretical predictions.

5.4 Comparison of Experiments with Simulations

To assess the accuracy of the simulation, the simulation program was executed with data

that matched the conditions of the experiments done by McCormick and Ohl [31].

5.4.1 Scattering force coefficients

The scattering force coefficients, as discussed in Section 3.4, are estimated from calcula-
tions using the source method. These data are scaled approprately, as described in Sec-
tion 5.1. Equation 5.6 is used to scale the period of the waves in the model scale to the
prototype scale. The data of Faltinsen and Michelsen citeFaltMich that are presented in

Section 4.7 are used to calculate the scattering force magnitudes and phase angles.

5.4.2 Radiation and viscous damping force coefficients

Because of the availability of data from the unforced response of the scale-model, a tech-

nique that is different from that described in Section 3.4 is used to evaluate the radiation
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Figure 5.6: Five frames of animation corresponding to Figure 5.5, with the motion analysis

error uncorrected. (five frames per second, T = 143 s, and H = 0.071 m.
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force coefficients. The numerical technique of Section 3.4 is more versatile, and is used
in Chapter 6 for the analysis of the prototype-scale MWP, a system for which unforced

response data are not available.

The damping coefficients of the system are estimated by analyzing its unforced response.
From the unforced response, the damped natural period and the rate of decay of the re-
sponse are estimated. These can be used to calculate the added-mass and the damping
coefficient of the system. Note that this damping coefficient is the total damping coeffi-
cient, including both radiation damping and viscous damping. The effects of these two

damping forces cannot be separated using this technique.

Approximating the system as a simple spring-mass-damper oscillator, as shown earlier in
Figure 3.1, one can find the mass m, the damping coefficient ¢, and the spring coefficient
k. Figure 5.7 shows the unforced pitching response of the central barge of the MWP scale-
model, as recorded by McCormick and Ohl [31]. In this experiment, the bow of the forward
barge was raised so that the barge had a pitch angle of 5 degrees. The bow was released
from rest, and the response of the system was recorded. From Figure 5.7, the damped

natural period, T, can be measured. The damped natural frequency, w,, is

(5.8)

Cz)dz

1
I

This frequency can also be expressed as

wy = w,,\/ 1-22 (5.9)
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Figure 5.7: Unforced experimental pitch response of central MWP barge.
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where the undamped natural frequency, w,, is
w, = L3 (5.10)
m
and, the damping ratio, £, is the ratio of the damping coefficient to the critical damping

coefficient. The damping coefficient is called critical at the minimum value that causes the

system to respond with no oscillations. This value is

c..=2NVNmk (5.1D

{= S (5.12)

The unforced response of an underdamped linear oscillator (one that meets the condition

that < 1)is

xX(r) = 7% [C, cos(wyt) + C, sin(w,t)] (5.13)

where C| and C, are constants, dependent on the initial conditions. The response can be
decomposed into an oscillatory part (inside the braces) multiplied by an exponential decay

part. The exponential decay acts as an envelope within which the response oscillates.

Each peak of the oscillating response lies on the edge of this exponential decay envelope.
If two different points on this envelope are known, the damping ratio can be found. Let x,
and x,, be points on the envelope of the response and ¢, and ¢, be the times corresponding to

those points. Two such points axe indicated on Figure 5.7. Taking the ratio of these values,
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one finds that

x_b = e~ ¢Wnlly=ts) (5.14)

X,

Substituting for w, using equations (5.8) and (5.9) and solving {or the damping ratio yields

- T, |in(2) 515

\/(z,, —1)* + T?1n? (:—:)

Therefore, the damping ratio can be calculated from the measured quantities 7, x,, X, Z,,

and z,.

The system spring constant, £, can be calculated from the barge geometry. Referring to

Figure 5.8, the restoring moment, due to a pitch displacement of 6 radians, is

1LareLare Larez
moment =~ =2 [(pg ;% _i_igB) _barge _] (5.16)

2 2 2 3
where § is the pitch angle, L, ., is the bare’s length, and B is its beam. This moment is an
approximation for small pitch angles, in order to linearize the spring constant. The spring

constant is the negative of the derivative of this moment with respect to 8. Therefore,

Lzarge

for pitching motion. For heaving motions,
k= PE LbargeB (5‘ ]‘8)
from a similar analysis.

The system mass, 2, can be found by combining equations (5.8), (5.9), and (5.10), so that

m=kT;(1-7) (5.19)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. SCALE-MODEL EXPERIMENTS 107
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Figure 5.8: Estimation of barge pitching spring coefficient.

The added-mass is the difference of this system mass 2 and the structural mass of the unit

(including the barge and, if applicable, plate).

Finally, the system damping coefficient, ¢, can be calculated by solving equation (5.12) for
¢, which yields

c=2{Vmk (5.20)
The damping coefficient, as mentioned above, includes the effects of both radiation and

viscous damping forces.

In order to check these calculations, these values for the added-mass and damping coef-
ficients were used in simulating the unforced response experiments using the same initial
conditions. Figures 5.9 through 5.12 show both the experimental and simulated motions,
with good agreement between the two sets of data. Note that these calculations were not

performed for the after barge. Since the after barge is essentially similar to the forward
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Figure 5.9: Unforced heaving response of the forward barge of the MWP model.
barge, the added-mass and damping coefficients were assumed to be the same.

The added-mass and radiation/viscous damping coefficients are used in the simulation. The

results of these simulations are presented in the following section.

5.4.3 Comparison of response amplitude operators

In order to compare the results of the simulations with the experimental data, the response

amplitude operators (RAQO’s) are plotted. The RAO is the ratio of the magnitudes of the
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Figure 5.10: Unforced pitching response of the forward barge of the MWP model.
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Figure 5.11: Unforced heaving response of the central barge of the MWP model.
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Figure 5.12: Unforced pitching response of the central barge of the MWP model.
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Figure 5.13: MWP experimental pitch RAO’s.

output of the system to the input. In this case, the output is the amplitude of the barge’s
pitching motion (in radians, dimensionless), and the input is /L., the dimensionless

ratio of the incident wave amplitude to the length of the system.

Figure 5.13 shows the pitch RAO’s for the three barges of the MWP scale model in the
wave-tank experiments. The peaks in each plot indicating the damped natural period of

the corresponding barge. The forward power barge (“Barge 1) exhibits a resonant peak at
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a damped natural period of 7, = 1.1 s. For the central barge (“Barge 2), the resonance
occurs at T, = 1.2 s. The motions of the after power barge (“Barge 3”) are small enough
that it does not exhibit any obvious resonant peak. Comparison of the magnitudes of the
peaks shows that the upwave power barge has the largest pitching motions, closely followed

by the central barge. The after power barge exhibits much smaller pitching motions.

Figure 5.14 shows the pitch RAO’s for the three barges of the scale model in simulations
matching the conditions of the experiments. The forward power barge exhibits a resonant
peak approximately at 7, = 1.1 s. For the central barge, resonance occurs at 7, = 1.0 s.
As in the experiments, the motions of the after power barge do not exhibit any obvious
resonant peak. Comparison of the magnitudes of the peaks shows that the upwave power
barge has the largest pitching motions, closely followed by the central barge, while the after

power barge exhibits much smaller pitching motions.

Figure 5.15 shows the pitch RAO’s for the upwave power barge of the scale model in
wave tank experiments, as well as the corresponding simulations matching the conditions
of the experiments. The simulation results show a resonant peak with a magnitude that is
18% larger than the experimental magnitude. The simulation and experiments both exhibit

resonance at approximately the same period, T, = 1.1 s.

Figure 5.16 shows the pitch RAO’s for the central barge of the scale model in wave tank
experiments and the corresponding simulations. The simulation results show a resonant

peak with a magnitude that is 34% greater than the experimental magnitude. The simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. SCALE-MODEL EXPERIMENTS 114

40

35 - —{O—— Barge 1 Pitch
——o0—— Barge 2 Pitch
—a—— Barge 3 Pitch

30 1

25 A

20 -

Pitch RAO

15 4

10 A

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Period (sec)

Figure 5.14: MWP simulated pitch RAO’s.
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Figure 5.15: MWP barge 1 experimental and simulation pitch RAO’s.
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Figure 5.16: MWP barge 2 experimental and simulation pitch RAO’s.
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Figure 5.17: MWP barge 3 experimental and simulation pitch RAO’s.

exhibits resonance at 7, = 0.9 s, which is 25 % different from the experimental value of
1.2s.

The pitch RAO’s for the downwave power barge of the scale model in wave tank experi-
ments and the corresponding simulations are shown in Figure 5.17. Neither the experiment
nor the simulation show any discernable resonant peak in the motion of the third barge.

The peak magnitude of the simulation is 35% greater than that of the experiment.
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The amplitude of the relative pitching motion between the upwave and central barges are
shown in Figure 5.18, with both experimental and simulation data plotted. Both the sim-
ulation and the experiment show a resonant peak at 7, = 1.2 s. The magnitude of the

simulation RAO at the peak is 7% smaller than that of the experiment.

The amplitude of the relative pitching motion between the central and downwave barges are
shown 1n Figure 5.19, with both experimental and simulation data plotted. The simulation
results do not show a clear resonant peak, but it appears that the peak occurs in the range of
T, = 1.0sto 1.2 s. The peak on the experimental plot at 1.2 s lies in this range. However,

the largest magnitude of the simulation RAO is 44% larger than that of the experiment.

5.5 Summary

The motions of a hinged-barge system as predicted by the simulation developed herein are
compared with the results of a series of scale-model tests. In the following chapter, the
simulation is applied to predict the motions of a prototype-scale hinged-barge system, the

McCabe Wave Pump.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. SCALE-MODEL EXPERIMENTS 119

40

—O—— Simulation
35 1 —8&—— [Experiment

30 4

25 A

20 A~

Pitth RAO

15 4

10 -

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Period (sec)

Figure 5.18: MWP experimental and simulation RAO’s for relative pitch between barges 1

and 2.
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Figure 5.19: MWP experimental and simulation RAO’s for relative pitch between barges 2

and 3.
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Chapter 6

Application: The McCabe Wave Pump

The McCabe Wave Pump (MWP) is a hinged-barge system that is designed to convert
ocean wave-energy into more useful forms of energy. The MWP was conceived in 1980 by
Dr. Peter McCabe in Ireland. A prototype was {abricated for Hydam Technology Limited

of County Kerry, Ireland, and tested in the Shannon River estuary off the west coast of

Ireland.

Herein, the prototype-scale MWP system is simulated using the mathematical analysis de-
veloped in the preceding chapters. The power acting on the two hinges is used as the
measure of the performance, since the MWP takes power from the hinges to drive pistons

which do the desired work (production of potable water or electricity).

Finally, a modification of the MWP design is proposed based on matching the wavelength

corresponding to the modal period of the design sea. This design modification takes into

121
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account the fact that the length of the system needs to be compatible with the wavelength
of the design waves. For systems whose size relative to the wavelength is such that they
cannot be treated as particles, the compatibility of the system’s length with the wavelength
must be accounted for, just as the ratio of the natural frequency to the wave frequency must
be designed with respect to resonance. In order to match the wavelength, it is proposed
that the length of the forward and after power barges are doubled in length. This simple

modification is shown to increase the system’s power output by approximately 150%.

6.1 Analysis of MWP prototype performance

The MWP prototype was deployed in the mouth of the Shannon river near Kilbaha on the
coast of Ireland. An aerial photograph of the deployed system is shown in Figure 6.1. The

dimensions of the system are shown in Figure 6.2.

6.1.1 Radiation and scattering forces

In Chapter 5, the radiation force coefficients for the wave-tank experimental model were
estimated from unforced response data (see Section 5.4.2). For the prototype, no unforced
response data are available, so the scattering and radiation forces are estimated from cal-
culations using the source method, as discussed in Chapter 4. The data of Faltinsen and

Michelsen [6] that are presented in Section 4.7 are used to calculate, the scattering and
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Figure 6.1: Photograph of MWP prototype, deployed off the coast of Ireland.
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Figure 6.2: Sketch of MWP prototype, to scale.
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radiation forces. These data are Froude-scaled appropriately, according to equation (5.6),

which is used to scale the period of the waves in the prototype scale to the scale of Faltinsen

and Michelsen’s data.

6.1.2 Mooring forces

In its operational mode, the MWP prototype is moored by three lines attached to mooring
buoys, as seen in Figure 6.1. The mooring system allows the MWP to swing through a range
of approximately 60 degrees, so that the MWP orients itself to face into the predominant
waves. The bow mooring line and buoy are shown in Figure 6.3. In the analysis, the
honizontal (surge) force exerted on the MWP system by the mooring line on the bow of the
system is approximated by a linear restoring force, as described in Section 3.6. The two aft
mooring lines are assumed to be completely slack and exert no force on the system. This is

actually the case, except in storm seas.

6.1.3 Hinge damping: impedance matching

The MWP system uses hydraulic pistons at the hinges between the barges to drive pumps
and extract useful power from the barge motions. The hinge forces exerted by this power-
take-off system is modeled by a linear damping moment, as described in Section 3.7. Equa-

tion (3.25) is repeated below:

M,

Joj—=1

= —Chinge [61 ([) - ej-lw([)] N i= 2, ooy N (6,1)

hinge
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Figure 6.3: Photograph of a Mooring Buoy and cable for the MWP prototype.
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McCormick [34] shows that wave-power systems are most efficient when the damping due
to the power-take-off system matches the hydrodynamic damping. This condition is called
impedance matching. To meet this condition, the hinge damping coefficient, ¢,,,. is esti-
mated by calculating the hydrodynamic damping of either of the two power barges (barges
1 or 3) as the bar.ge pivots. As the barge pivots around its hinge, the hydrodynamic radia-
tion damping due to the pitching motion about its center (proportional to A 5nge,-) as well
as the hydrodynamic radiation damping due to the heaving motion (which is proportional

to A;; ) both contribute to the hinge damping moment, so that
barge;

L. 2
Lygrge, + 75
+ A [ bnrgel 2 ] (6.2)

3.3 barge; 2

In other words, hinge damping coefficient is set equal to the damping coefficient of the

barge in pitch about its hinge.

6.1.4 Hinge power spectrum

The power output spectrum of the MWP prototype is shown in Figure 6.4. This shows the
ratio of the hinge power output of the system to the wave power incident upon the system,
as a function of wave period. Assuming deep water, the incident wave power per unit width

is calculated from linear wave theory, which states that

_ pg’H?
wave 16 W

(6.3)
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Figure 6.4: Numerical prediction of the hinge power output spectrum for the MWP proto-

type.
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where H is the wave height, and w is the angular frequency. See, for example, Mc-

Cormick [32] or Dean and Dalrymple [4].

The scale-model experiments described in Chapter 5 did not have any power-take-off damp-
ing at the hinges, so a power output spectrum cannot be calculated. In those experiments,
the hinges were well lubricated so that the hinge moments could be considered negligible.

With no moment at the hinges, the system did not have any power output.

Note that Figure 6.4 shows that the power output is greater, in some cases, than the power
input. The resonant peak near a period of 5 seconds shows this clearly. This apparent
inconsistency stems from the fact that the power input is calculated as the wave power
power passing through a width equal to the beam of the MWP system. The phenomenon
of diffraction describes how wave energy moves perpendicular to the direction of the wave
travel when passing a region of less or greater energy (as in the lee of an obstruction).
In this case, wave diffraction allows a wave-energy device to absorb power from a width

greater than the system’s beam (when the system is operating near its resonant condition).

6.2 MWP performance and improvement

The MWP was designed to operate in irregular seas with a modal period of 7 seconds,
an average wave height of 1.5 meters, and a water depth of 20 meters. The wave power

incident upon the system in the average sea 1s 61 kilowatts, obtained by multiplying equa-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. APPLICATION: THE MCCABE WAV E PUMP 130

tion (6.3) by the system beam of 3.9 meters. For this design condition (in regular waves),
Figure 6.6 shows the power output of the forward and after hinges in the time domain, as
well as the total power output. The system is started from rest, so some transient response
can be seen before the system comes to equilibrium. After the transient response has settled
out, the average power output for the forward hinge is 26% of the wave input power, 7.7%

for the after hinge, and the total power output is 34% of the incident power.

Note that the design condition of 7-second waves corresponds to a value of T/T, of 1.4.
Figure 6.4 shows that this period is significantly off from the resonant condition. The
simulations indicate that the power output of the system in its design condition could be

greatly increased by tuning the system so that it resonates near the design wave period.

6.2.1 Modification of MWP prototype design

Ocean wave-energy conversion devices are designed to absorb the maximum amount of
incident wave power in the average sea state in which they will be deployed. This typically
involves designing the system for resonance, so that the damped frequency of oscillation
of the system corresponds to the modal period of the expected sea state. This resonance
results in large motions of the system, and power absorption is maximized. The response
of floating bodies whose length is on the order of the length of the expected wave, also
depends on the body-length to wavelength ratio, % Thus, in designing a wave-energy

system, spatial compatibility with the design wavelength should be addressed as well as
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temporal resonance. This idea is further explored in Section 7.1.5. In order to maximize
the pitching motion of the barges and, therefore, the power produced by the system, it is
proposed that the system be lengthened so that it is approximately as long as the design

wave itself.

The dispersion relation from linear wave theory relates the wavelength to the water depth.

This relationship can be expressed as
k tanh(kh) = &, 6.4

where £ is the water depth, &, is the deep-water wave number, and where £, the local wave
number, is defined by

k=— (6.5)

The deep-water wave number is

2
ky =2 = = (6.6)

where T is the wave period. The dispersion relation [equation (6.4)] is a transcendental
equation. It can be solved by iteration, and applying it to the MWP design condition of 7

second waves in 20 meters of water, one finds that the wavelength is 72 meters.

To investigate a modification to the MWP design in an effort to improve its performance, a
change in the lengths of the forward and after barges is proposed. The length of the forward
and after barges is doubled, while their beam is halved. This brings the total system length
to 68 meters, roughly the length of the design waves. This means that when a wave crest

is at the bow of the system, a wave trough is near the center barge and another crest is near
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the stern of the system. This ensures that a large “bending moment” acts on the system,
leading to large flexing motions of the hinges. A sketch of the revised design is shown
in Figure 6.5, which also illustrates the relationship of the wave peaks and troughs to the

system.

In the interest of preserving the existing design work as much as possible, the central barge
is kept unmodified in the proposed design. The displacement of the forward and after
barges is kept constant, as is the waterplane area. This means that both the barge mass and
the heave restoring force are unchanged. Furthermore, the surface area is increased by only
23%. With the same displacement and the surface area modestly increased, the material
and fabrication costs for the barges should not be dramatically higher than for the existing

design.

In order to assess the performance of the modified design, the average total hinge power
for the system was calculated for the original and modified designs. Figure 6.6 shows the
forward and aft hinge power in the time domain, as well as the total system power, in design
conditions (7 second, 1.5 meter waves in 20 meters of water). After the transient response
has settled out, the average power output for the forward hinge is 76% of the wave input
power, 11% for the after hinge, and the total power output is 87% of the incident power.
The power output of the modified system is shown in Figure 6.7. The power output of the

modified MWP is increased by 156% over the output of the original design.
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Design wavelength= 72 m

Figure 6.5: Sketch of proposed MWP design, with original MWP prototype in dashed lines

for comparison.
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Figure 6.6: Power output MWP prototype.
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Figure 6.7: Power output of proposed modified MWP prototype.
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6.3 Summary

The simulation of the MWP prototype indicates that there is room for improvement in the
design. The power spectrum shows resonance that does not match the design wave period.
Furthermore, a revised MWP design with a system length that approximates the design

wavelength exhibits a significant improvement in hinge power output.
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Chapter 7

Discussion and Conclusions

The simulation that is developed herein is evaluated based on its predictions of the motions
of the McCabe Wave Pump (MWP) system at both the model scale and the prototype scale.

Conclusions are drawn based upon these evaluations, and recommendations for {urther

work are made.

7.1 Discussion

The present analysis improves on previous work in several ways. Heaving motions are
included in the simulation, and the equations of motion of the system are nonlinear. Mc-
Cormick’s previous analysis of the system [35] showed good agreement for the heaving

motions of the system, but poor prediction of pitching motions. The present simulation

137
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shows good agreement both quantitatively and qualitatively.

7.1.1 Quantitative agreement of simulations with experiments

The simulation developed herein predicts the amplitude of motions reasonably well. Fig-
ures 5.13 to 5.19 show that the agreement between the simulations and experiments of
McCormick and Ohl [31] is quite good. In both simulations and experiments, the pitching
amplitudes of the forward and central barges are both much greater than that of the after

barge. Furthermore, the simulation results show resonant peaks at periods that are close to

those seen in the experimental results.

7.1.2 Qualitative agreement of simulations with experiments

More important than the quantitative comparison, the simulation predicts the qualitative
character of the motions of the system. For example, in the wave-tank experiments on
the MWP scale-model, the pendulum-like motion of the central barge with the attached
plate were observed. These motions, while obvious in hindsight, were not anticipated. The
central barge was originally designed to remain relatively stationary as the forward and
after barges pitched about it. The simulations of the MWP scale-model experiments show
motions that exhibit this pendulum-like motion of the central barge. Figure 5.16 shows that
the simulation predicts the large pitching oscillations that are observed in the experimental

data.
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The phase of this pendulum-like motion of the central barge is particularly interesting.
Analysis of the animations of the experimental data show that in almost every case, the
phase of the central barge’s pitching oscillations is such that the flexing of the forward
hinge is increased. The pitching motions of the forward barge are out of phase with those
of the central barge, so that as the forward barge is pitching up, the central barge is pitching
down. Since, in the case of the MWP, power is derived from the hinge flexing motions,
this pitching motion enhances the performance of the system. Figure 5.18 shows good
agreement between the experiments and simulations, indicating that this phase relationship

is captured by the simulation.

The phase of the pitching motions of the central barge seems to have the opposite effect on
the flexing of the after hinge. The pitching central barge raises the bow of the after barge
in phase with the wave crest being at the stern of the after barge. This makes the pitching
amplitude of the after barge significantly less than that of the forward barge. Further in-
vestigation into this phenomenon could indicate if this pendulum-like motion of the central

barge results in a net gain or loss of the total power output of the MWP system.

7.1.3 Tank Testing: Wall Interference and Scaling

There are always problems introduced in small-scale wave-tank experiments that are not
accounted for in mathematical simulations. Some of the more significant ones are presented

in this section.
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Figure 7.1: Plan-view sketch of water wave-fronts radiated from a model and reflected by
the tank walls back to the model.

Possibly the most important problem is that of wave-tank wall interference. In any finite
wave tank, the proximity of the model to the walls of the tank will affect the hydrodynamics
in the experiment. A sketch illustrating this phenomenon is shown in Figure 7.1. Active
wave-absorbers on the walls of some tanks built recently go a long way towards eliminating

this problem.

In the experiments of McCormick and Ohl [31], this tank-wall interference can be most
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clearly seen in the unforced response of. the model. Figure 7.2 shows that after the bow of
the model is released in calm water, the fforward barge initially exhibits damped oscillations
as expected, followed by larger oscillations as the wave energy radiated from the model is

reflected off of the tank walls and back ®o the model.

The time that it takes the waves radiated from the model to reflect off of the tank walls
and travel back to the model can be estimated quantitatively. The wave energy travels at
group velocity, ¢,. Using the deep water approximation, linear wave theory predicts that
the group velocity is

(7.1)

(SR
g foo

o
This is half of the wave celerity, which is the speed of an individual wave crest. The radiated
waves must travel half of the width of the tank, and then the reflected waves must travel

half of the width as well. Therefore, the ttime after which reflected waves will interfere with

the model is approximately

wvidth width 2 w

Cg g

(7.2)

[reflccl =
For this case, the estimated time for tank-wall reflection interference is 2.6 seconds. This

time span is indicated on Figure 7.2

The treatment of viscous forces by the samulation is another possible source of discrepan-
cies. Modeling viscous forces is the most difficult problem in fluid mechanics. The viscous

forces are treated in two different ways im this investigation, and each has its drawbacks.

For the simulation of the model-scale experiments, unforced response data are available.
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Figure 7.2: Unforced pitching response of the forward barge of the MWP scale-model.
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From these data, the damping coefficients for the bodies are be estimated, as shown in
Section 5.4.2. Tank-wall reflection interferes with the unforced response of the system,
adding external excitement of the system that is not accounted for in the simulations. The
effects are exhibited in Figure 7.2. Furthermore, the free-response analysis treats each body
independently. The fact that the barges are hinged together makes the motions much more
complicated. As energy is exchanged between the different modes of motion of the system,
nonlinear effects are added to the pure damped-harmonic oscillation predicted by the linear

analysis.

For the simulation of the prototype-scale system, hydrodynamic radiation coefficients are
obtained from calculations using the panel method described in Chapter 4. The only vis-
cous forces included in the simulation of the prototype are the drag force and moment on

the plate suspended from the central barge.

The nature of model testing in water waves opens up a common trap. One should be
cautious about conclusions drawn by scaling model test results up to the prototype scale.
Viscous and gravity forces, for instance, do not scale the same. Therefore, it is impossible
to scale these forces simultaneously. In other words, as described in Section 5.1, one can-
not match both the Reynolds number and the Froude number in a scale-model experiment.
However, important results, such as identifying the pendulum-like motions of the central
barge of the MWP, can be obtained from scale-model experiments, and quantitative results

on the prototype-scale can be estimated. In this investigation, the scale-model experimen-
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tal data is used primarily to assess the accuracy of the simulation developed herein. The

simulation is then used to make calculations on the prototype scale.

7.1.4 Hydrodynamic interaction

Another possible source of differences between the simulation’s predictions and reality
is the hydrodynamic interaction among the bodies. Hydrodynamically, each body in the
hinged-barge system is treated independently. In reality, the flow around each body is
influenced by the motion of each of the other bodies. Of course, the equations of motion

account for the mechanical interaction between the bodies though the hinge forces and

moments.

7.1.5 Body length / wavelength compatibility

In Chapter 6, a design modification to the MWP prototype is proposed. The modification
is based on the idea of making the system length approximately equal to the design wave-
length, and the performance gain is substantial. Compatibility between the barge length
and wavelength is an important factor in designing floating systems, whether it is desirable

to minimize or maximize the motions of the system.

Consider Figure 7.3 as an illustration of this spatial compatibility concept. A barge with
a length that is equal to the wavelength is shown in column (a) of Figure 7.3, while col-

umn (b) of the figure shows a barge with a length that is half of the wavelength. Instants
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corresponding to a complete wave-period of time are shown in each column. By examining
the vectors representing the hydrodynamic buoyant forces, one can see that at each point
in time, the barge in column (a) experiences no net heaving force. (Note that for the sake
of simplicity the present discussion does not take into account any of the hydrodynamic
forces; only the hydrostatic forces are examined here, as if the wave profile were frozen in
time.) On the other hand, for the barge in column (b), the instants in time corresponding to

t = T/4 and r = 3/4T show large heaving forces.

Figure 7.3 as a similar illustration of this spatial compatibility effect on the pitching degree
of freedom. A barge with a length that is equal to the wavelength is shown in column (a)
of Figure 7.3, while column (b) of the figure shows a barge with a length that is twice
the wavelength. By examining the vectors representing the hydrodynamic buoyant forces,
one can see that at each point in time, the barges each column experience no net pitching
moment at times corresponding tor = 0,7 = 7/2, and 7 = T. However, at times ¢ = 7/4

and 1 = 3/4T, the pitching moment on the barge in column (a) is much larger than the

pitching moment on the barge in column (b).

The implication of this phenomenon is that, with other variables being held constant, the
ratio of a body length to the wavelength has a significant effect on the wave forces on
the body. This means that the body length to wavelength ratio has a strong effect on the
response of the body in waves that is independent of resonance. Note that for a given

wave period, the wavelength will change with the depth of the water, while the wave fre-
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Figure 7.3: Sketch illustrating the relationship between the body length to wavelength ratio

and buoyant heaving force. The arrows indicate the wave-induced buoyant force vectors.
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Figure 7.4: Sketch illustrating the relationship between the body length to wavelength
ratio and buoyant pitching moment. The arrows indicate the wave-induced buoyant force

veclors.
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quency stays constant. This means that for a given body, consideration of resonance will
not change with the water depth, while the wavelength compatibility may change. Fi-
nally, this wavelength compatibility depends on the degree of freedom being examined.
For instance, a particular body length / wavelength ratio that leads to maximum pitching

moments will not be the ratio that leads to maximiom heaving forces.

7.2 Conclusions

The simulation method described herein is a useful tool for analysis of hinged-barge sys-
tems. The simulation predicts important qualitative characteristics of the physical system’s
motions, such as the pendulum-like motion of the MWP model’s central barge. Quantita-

tive agreement of simulations with experiments is also good.

The simulation also proved useful in refining the design of a hinged-barge system. A
modification to the prototype-scale MWP design was proposed and shown to improve the
performance of the system by 156%. Qualitative and quantitative comparisons can be made

between different design iterations with the simulation.

7.3 Recommendations for further work

The simulation should be used to investigate the response of the systems in irregular seas.

Experimental data from irregular-sea model tests is available. The numerical analysis
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should be extended to make comparisons with these data.

The simulation should be modified to account for a nonlinear inertial matrix in the equa-
tions of motion. At present, the inertial matrix is linearized, in order to facilitate the solution
of the equations of motions. The forces, which are on the other side of the equations of
motion, are nonlinear. A nonlinear inertial matrix would require recalculating the matrix at

each time step. This is more difficult, but not prohibitive in either coding or computing.

A panel-method source distribution program for solving for scattering and radiation forces
should be developed that will account for the hydrodynamic interaction between the bodies.
A first step towards this goal would be to create a mesh of the whole hinged-barge system,
and have the program solve for the hydrodynamic forces as only one body is oscillated

while the other bodies are held fixed.

Results of the simulation of prototype-scale motions should be compared with data from
the field. These data are not currently available, but the prototype MWP should be outfitted

with instruments to measure and record the motions of the system.

A complete design optimization should be carried out for the MWP design. The system
should be designed so that both resonance and wavelength compatibility are addressed. A
complete optimization of the system would require a more detailed model of the power-
take-off system. A performance comparison of the different uses (freshwater or electricity

generation) for the wave power captured should be made.

Taking a systems-based approach to the design would allow for investigating the use of
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active controls on the power-take-off system. By actively controlling the back-pressure on
the hydraulic system, the wave-power system could tune itself to varying wave climates,

broadening the resonant peak of its power output spectrum.
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Definition of Symbols

[C] damping matrix
E. Kinetic energy
Ep potential energy
{F} force vector

horizontal component of the force exerted on barge i by barge j
vertical component of the force exerted on barge i by barge j

horizontal component of the external force on barge j

Jearge,
Jnarses vertical component of the external force on barge j
Jotee, horizontal component of the external force on plate j
Jptes vertical component of the external force on plate j

8 magnitude of acceleration due to gravity

151
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index

inertial matrix

index

unit vectors for cartesian coordinate system
mass moment of inertia

mass of i-th unit

moment exerted on barge i by barge j
external moment on barge j

external moment on plate j

number of barge/plate units in hinged-barge system
outward unit vector normal to a surface
fluid static pressure

atmospheric pressure

fluid dynamic pressure

i-th generalized displacement (translation or rotation) coordinate

submerged surface of the body
fluid free surface

time

fluid velocity

components of fluid velocity vector
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(V] source influence matrix

W- virtual work done against damping
oWy virtual work done against the wave forces and moments
(x.v.2) coordinates in cartesian system

€ index

n free surface elevation

. index

K index

w (circular) frequency of oscillation
Q fluid circulation

[ velocity potential function

P fluid mass density

T index

v “del” operator (: 2+ 5)+ 5"—;’)
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Appendix B

Green’s Functions

A Green'’s function, GIXx; 2] e~ is used to solve the scattering and radiation potential flow
boundary-value problems in Chapter 4. The function is the velocity potential at the point

X = (x, y, 2) due to a source of unit strength at the point _? = (& x £)-

For different boundary conditions, different Green’s functions are used. Specifically, the
Green’s function can be written to satisfy either the finite or infinite sea bed boundary

condition. For conditions that warrant the approximation of infinite water depth (see Have-

lock [16]),
- = —iw 1 1
G[xX;Ele™ = ( R + 7
ak, = . e Ko(kr)
—2 | {kocoslkz + O] - ksin[k(z + )]} el dk —
2y DY, (ko) + i27ky €9 D o (kyr) )€™ (B.1)
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where J,(x) is the Bessel function of the first kind of zero order, ¥,(x) is the Bessel function
of the second kind of zero order, and K,(x) is the modified Bessel function of zero order.

Also in equation (B.1) are

R = a2+ -y +@E-07

R = Ja-eP+0-xP+c+0?

ro= -8+ —x)

and the deep-water wave number

-
w?

/\’OZ?

See, for example, Faltinsen [5].

For finite-depth conditions, the Green function can be expressed in integral form [see, for

example, Faltinsen and Michelsen [6]] as

- 1 1
G[._\:; §]e““" = { E + F'f’

f‘“ ( + k) e cosh [u(z + h)] cosh [u(Z + h)]

2PV -

0 p sinh(uht) — kg cosh(ult)

i27r(k2 — k) cosh [k(z + h)] cosh [k({ + h)]
Kh— k3h + k,

Jo(ur) du +

Jolkr) }eor (B.2)

where the notation “PV” indicates a principal value integral.

Alternately, the Green’s function for finite-depth conditions can be expressed in summation

form [see, for example, Faltinsen and Michelsen [6]] as
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G[x; Ele™ = cosh[k(z + h)]

( 2m(kE — k?)
I2h — ICh + k,

cosh[k(Z + h)] [YO(L’r) — iJy(kr )] +

oo

24k
42 o - Coslu(@ + ] cos[u( + 1K) } (B3)

2 2h — &
= Hih+ kgh — ky

where the values of y, are the solutions of the transcendental equation

p an(uh) + kg = 0 (B.4)

Figure B.1 shows a plot of the surface elevation surrounding an oscillating source at the

surface, as predicted by equation (B.1). From linear wave theory,

1 d¢
=———= (B.5)
77 g at =0

so that the surface elevation can be found by evaluating the time derivative of the velocity
potential at the mean free-surface. In the figure, waves can be seen radiating outward from

the source, and decreasing in amplitude as they spread out.

The finite-depth and infinite-depth expressions of the Green’s function are used in different
applications. Where the water wavelength is less than twice the water depth, the infinite
depth approximation can be made. For applications in which water depth is a significant
factor, the integral and summation formulations of the Green’s function are both applicable,
and equivalent. The summation formulation converges rather quickly, and 1t is computa-
tionally more efficient than the integral formulation (Garrison, 1978). The integral expres-

sion, however, can be separated into a singular term (1/R) and a non-singular term (the rest
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Figure B.1: Waves due to a point source.

-

of the expression). The singular term becomes singular at the source itself, where X = &
and R = 0. The integral of the singular term over the neighborhood of the source point
can be approximated analytically (Garrison, 1978). Therefore, the integral formulation of
the Green’s function is best used in the immediate neighborhood of the source, while the

summation formulation is best used for all other calculations.
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Complex Algebra

In Chapter 4 some manipulations of complex equations are performed which require further

justification. This Appendix provides such justification.

C.1 Real and Complex Equality

In proceeding from equation (4.57) to equation (4.64) in Section 4.5.1 and from equa-
tion (4.82) to equation (4.83) in Section 4.6.1, it is implied that if the real parts of two
complex expressions are equal, then the expressions are equal to each other. This is not

generally true; however, it is true in this specific case.

Let A and B be complex numbers which are constant in time; in other words,

J0A OB

— T — *l

ot ot (€.
158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C. COMPLEX ALGEBRA

It is desired to show that
Re {Ae""”‘ } = Re {Be“"‘” } forallr =0

The previous expression implies that

A=B

Express A and B as complex exponentials, so that

Equation (C.2) becomes
Re {ae®e™'} = Re {ce®e™'}, foralls = 0

or

Re {ae“”“‘”)} = Re {ce‘(d‘“’ )} ,forallr =0

159

(C2)

(C3)

(C4)

(C.5)

(C.6)

(C7

Euler’s formula (see, for example, Abramowitz and Stegun [1]) gives the relationship be-

tween the real and imaginary parts of a complex exponential:

e® = cos(@) + isin(6)

so that equation (C.7) becomes

acos(b — wt) = c cos(d — wt), forallt =0
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For this equation to hold true for all z = O, it is required that

a=c
and

b=d
Therefore,

A=B

a = ¢
b = 0
d = 2wt

In this case, equation (C.7) simplifies to

cos(—wt) = cos(wt)

160

(C.10)

(C.11)

(C.12)

(C.13)

which is true. However, equation (C.1) is violated, since B is a function of time in this

example.

C.2 Interchanging Real Operator and Derivative

[f A is a complex number, then

7, 0A
—a;Re {A} = Re {a}
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This can be shown by using the definition of the partial derivative, which can be expressed

as

a_f = lim fl.ﬁ—'.\.x - flt
Ox a0 Ax

Since A is complex, it can be written as the sum of its real and imaginary parts. Let

Al, = a+ib
Al = c+id
Then
et = g St 2R 20
and

JA -
Re _} - Re{lim Alf_*-n____Al‘}
ox Av—0 Ax

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

Substituting equations (C.16) and (C.17) into the right-hand side of the previous equation

vields

Re{a—A} _ Re{lim (c+zd)—-(a+zb)} _ lim c—a
ox Ar—0 Ax Ax=0 Ax

Therefore,

d JA
-a;Re {A} = Re {a}
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Computer Programs

This chapter describes the overall organization of the computer programs written for this
research. The first program is used to take the equations of motion for each individual
unit as well as the Kinematic relationships between the adjacent units and solve for the
system equations of motion for the entire system. This process is described in Chapter 2.
The inertial and damping matrices for the system are found. The second program is used
to solve the equations of motion, stepping through in time to obtain a time history of the
system’s motion. Finally, the simulation is animated by the third program, yielding a digital

movie file.

Programs with a .nb are Mathematica notebooks. [Mathematica is used because of its
ability to perform symbolic and numerical mathematical computations, and allow for some-

what sophisticated visualization of results.] Programs with a . for extension are Fortran

162
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programs; a Fortran 77 compiler was used.

D.1 Computer program descriptions

D.1.1 Matrix assembly

This program (AssembleMatrx.nb) assembles the inertial and damping forces on each
individual body into inertial and damping matrices for the system by using the equations of
motion for each body. The coordinate systems are transformed from the centers of gravity

of each body to the coordinates of the whole system.

D.1.2 Simulation

The (simulation. for) program solves the equation of motion for the whole system,

stepping through in time to obtain a time history of the system’s motion.

The equations of motion for the system are expressed in matrix form, so that

[MHg} + [Bl{g} + [K]l{q} = {F} (D.1)

where [M] is the system inertial matrix, incorporating the physical mass of the system and
the hydrodynamic added-mass, [B] is the system damping matrix, incorporating hydrody-
namic radiation damping, viscous damping, and power take-off damping at the hinges, and

[K1]1is the system spring matrix, with linearized mooring forces. {F'} includes hydrodynamic
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scattering forces, hydrostatic forces, gravity forces, and viscous forces on the plates.

The equations of motion are solved for the acceleration vector, which is
{g} = [M]™' ({F} - [Bl{g} - [K1{g}) (D.2)

An iteration is used to solve for the motion of the system in the time domain. For the i-th
time step, the forces on the right-hand side of this equation are calculated. A Gaussian
Elimination routine is used to calculate [M]™1, and the forces are multiplied by this result
to calculate the acceleration of the body at the next time step, {g},,,- A trapezoidal rule

integration scheme is used to solve for the velocity at the next time step, {4}, ,, so that

(@), = Lt et (D3)

Similarly, the velocity is integrated to find the position at the next time step, {q},,,, SO that

@y = Lt (D.4)

D.1.3 Animation

The (Animate.nb) program takes the time history data and turns it into an animation
of a two-dimensional schematic of the hinged-barge system. First, the geometry of each
body is defined in its rest position; then it is translated, and rotated. Finally, the frames

corresponding to each time step are put together in an animated movie file.
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D.2 Computer program code

This section contains, verbatim, the Fortran and Mathematica program files described in

the previous section.

D.2.1 Matrix assembly program code

Below is listed the Mathematica program listing that was written to assemble the matrices

for the hinged-barge system.

Assemble Matrices

Equations of Motion

User Input

filePath is the path to the folder which contains the data (input & output) files.
Infl]:= filePath = Documents : Dave’s Docs : Research : Simulationdata :;

dataFile is the root name of the data files. Appropriate extensions will be added to this

name [or the input and output data files.
In[2]:= dataFile = R15T0830;

In[3]:= inputFiles = ReadList[filePath <>dataFile <> .in, String, 4]

Outf3]= {‘mwpmodel44’,’T13HO051","2005010°,  rest20s’}
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Constants

In[4]:= maxBarges = 4; maxDof = maxBarges + 2;

Kinematics

Compatibility constraints due to hinges...

L + th_nge

In[5]:= %, [t]l =x,  [t]+ Lharge ; Cos[o, [tl]-& sin[e,  [t1];

X el =x  [t1+ (L, +Lps,,.) Cos[e, [t1]+

L + Ly
ﬁ-_z_ﬂ‘: Cos[e, [t1]-8,Sin[e, I[t1]:

X5, [E1=x, [t]+ (le_ +nge) Cos [elm.,. (e1]+
(Lzhnj. +Lhinge) Cos [ezmg. Ctl ] +

L +Lysince

lm"fh"”g Cos [93..4_9. [tl1] -g;sin [esm“ e1];

Ll

+Lhin
In[6]:= z, [t]l =z, [t]-—= EAd

5 sin[e,  [tl]-g Cos [e.,...[£1]:
Zoo [l =2, (€] - (L, +Lyg,.)Sin[e, [t]]-

L +Lpse
’»-_mz_‘“‘i sin[e, [(tH] -g,Cos [6, [t1]:

z3  [t]l = 2 lytage [t] - (le' +Lb_,~,_nge) Sin [91.,.,. [t] ] -
(Lo,.... +Lninge) Sin [0, [®1]-
M

2
In[7]:= 6, [tl =6, _I[t];

sin[e, [tN]-&;Cos[o;  [t1];

6, [tl =0, [tl;

o, [tl=6, Itl;
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Velocity components...

In[8]:= x; "[t] =8, x;_[tl;
X, [t] =8, x, [t]l;

x;_ '[t] =9, x;_[t];

In[9]:= z, '[t] =8, 2z, [tl:
zzm’ [t] = at zzm [tl:

zs_'[t] =8, z;_[t];

In[l0]:= elm'[t] =0, 61‘, [tl;
8, '[t]1 =0,6, [tl:

8, '[t] =0, 65 [t]l;
Acceleration components...

Infil]:= xlm" (tl =9, xlm' [t]l:;
xzm" [t] = at x2m' [tl;

xgm" it] =0, x3m’ {(tl:

Infl2]:= zlm" [t] =0, 21,,,' [tl;
zzm" [t] =8, sz' [t1:

zgm" [t] = at 235(, [t] ;

In[13]:= 6, "[t] =0, 0, '[tl;
e, "Itl1=0,0, '[t];

8 " [t] =0.0;_ '[tl:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX D. COMPUTER PROGRAMS 168

Kinetics

Kinetics: Apply Newton’s second law of motion to 4 barges, each with 3 degrees-of-
freedom (surge, heave, and pitch). Newton’s second law of motion is applied in the quasi-

static form: ) Forces — mass acceleration = 0
For example, xForcel is defined to be

xForce = ) Forces — mass acceleration

Later the equation xForce = O is solved.

In[l4]:= xForcel :=

Flfzx - (A + mlh‘ﬂl' + Al’l mlPlat.) xlm” [t] ;

F, +F, %

barge, plate, lplate

(Turn off spelling warning):
In[{l5]:= Off[General :: spelll];

In[l6}:= zForcel :=
F, +F +Fl'2 - (A3,3

+m + +m )z “1tl:;
barge, 1pllt¢= z lharge Lharge A3 3 Lptate Lo [ ]’

In[{l17]:= On{General :: spelll];

NOTE: moments taken around the Center of Mass

44

moment = 3 My — J 3600

Later the equation moment = O is solved.
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In[18]:= momentl :=M,  +F, (& -8, )Jcos[e,  [t]]-
(. -glb_m) Sin [elu_q_ [e1] +», -

-8,)cos o, [t]] +F,

F
1h-rq.,

(glu_“ -Z,) sin [elum [t1]+

Lipsng

lpht-x (glphtc plate

L +
M, , +F, 5 (gl cos[o,  [t]]- Lhicge . ® sin [e,.... [t]]) -

F le‘m- + Lhinge
1,2, 2

In[l9):= xForce2 :=F

Cos [6, [t]]+Z,Sin [e...... [t]]) -3, 6, "ltl;

+ thlx + F213,-

) x, " [t]:

+F
zb‘tﬁtx 2pht.,

+A

A +m +
( L lapce 2harge L V% P 2 tate

(Turn off spelling warning):
In[f20]:= Off[General :: spelll];

In[21}]:= zForce2 :=F +F,, +F,

plate Lt 3

F
2parge, 2

3.~
A +m + +m ) z, [t];
( 33 250ge 2pazge A, 32 1ate 2 1ate | ©2a [tl;

In[22):= On[General :: spellll];

In[23)]:= moment2 := M, +Fy (;’2 - gzm.) Cos [ezmq. [t] ] -

(g, - 52;..‘.,.) Sin [92,,,.,. [t1] M, -
-gz) Cos [ezm” [t]] +F,

zb‘:qn:

2 tatey (gsz.g. plate 5 (gzpht- - gz) Sin [ezuﬂ- [t} ] *

L L,
My, +F, (gz cos [0,  [tl]+ _irs_%ﬂ sin [ezu.,. (1] ) +

L + L ;
Fa,1, (—z"‘"—zh—"—!f—e- Cos [ezw” [t]] -§,8in [ezmq. [t] ] ) +

L + Lysinqe
My, +F, 5 (§2 cos [6,  [tl] - ﬁ::«z_"”’g_sm [e.,.... [t]]) -

L, + Ly . ”
Fy3 (iz_i Cos [ezu..,. [t]] +&,Sin[e,  [t] ]) -J,.6; " [t];

In[24]:= xForce3 :=

F +F3,, - ) x; [t];

A +m
3p1at.‘ 7 x ( 1'115.“. 3

+ +A +
Fbarge, barge 1, llpx.c- 3ptate

(Turn off spelling warning):

In[25)]:= Off[General :: spelll];
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In[26]:= zForce3 :=

Fsmv.‘ + F::m“‘ +F3 5 - (Az,z,‘_w. My e ¥ As,s,ym. Rl T ) zsm" [€]:;
In{27):= On[General :: spelll];
In[28]:= moment3 :=M, _ +F; (g, - 535“") Cos [93.“,. (e1]-
g; - §3Nm) Sin [e,um [t]] +M3Pm.-

. g;) Cos [ezu_,, [t1] + s tace, (¢,

zbotv.', (

F, -8;) sinfe;  [t1]+

plate, (gspht plate

L Ly,
M; , +Fy 5 (g3 Cos [0, [t1]+ iL;EEisin [es,.... [t]]) +

L, + Ly
Fs,2, (m-—zﬁ Cos [ezu“. [t1] -&;Sin [e3u_q. [t1] ) -3, 6, "[tl;

Moments of inertia.

Parallel - axis Theorem :
2
Jey =Jg +I lro,ml

In[29]:= 3, = (A 3, )+ (Alrlx...,g. emy ) (e-8, )7

2

mlplnt-) (glplnt. - gl) r

Inf30]:= sz = (ASISz,,m,. +J2‘_m) + (Alrlzm,, +m2m‘.) (52 - gzb‘“.) 2+

(As'szpllt. + szlntn) + (A’wlz,h‘. + mzplnt.) (gzﬂlat. - gz) : ;

5
lbnzvo

(A + Jl,m.) + (Al,l

5,5
7 Tlplate 1plate

Inf31]:= J3°. = (AS'SJ....,. +J3hw.) + (Alrlz.,.,,. +m3m.) (§3 - §3hw.) 2+

(As's’pu:. * szl-t') * (Al’llput- ¥ mspl-t-) (§3pht- B §3) ’ ;

Internal Hinge Forces and Moments

Reaction forces & moments

F,

e’

for example, is the internal horizontal hinge force that unit j exerts on uniti. The force

that unit j exerts on unit i must be equal and opposite.
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In[32]:=F,, =-F,,;

Fa,i, =-Fy,2 7
My, 1 =M 5;
Fz,z, = ‘F2,3,7
F3,2, =-F3,3 7
M; ,=-M, 37

External Forces acting on bodies

« radiation forces: added mass [A] & radiation damping [B]. For example, A, is the

l'!kbarge

added mass in the ith mode due to motion in the jth mode of the barge part of unit £&. The
modes are: 1 for surge, 3 for heave, and 5 for pitch. « other hydrodynamic forces (scattering
force, viscous drag, hydrostatic force) [ExtForce] » gravity [m g] » mooring forces [springk

x1]

Solve for the internal hinge forces. Eliminate redundant
equations and variables.

In[33]:= Solve[xForce3 ==0, F,,3 1

)

out[r33]= {{F,, 5.2 Fs +Fs - (m3buwc *my FBiy, HR

( - Cos [elmgn (£]] (Thinge +L1mm) 6. [t]1%-
Cos (e (t]] (o +L ) 65 [t£12- 1 cos [e (e1]
zhinqu hi‘nge zbnxqa zhi.nqe 2 3hinge
(Lhinge +L3bm) 05 [t]1%? +Sin [e3w {t]] gy 65, [t] 2,
xy,.. [t] -sin [meq, (£]1] (Lninge +L1bm) 6., [t]-

-5 sinfe, rtl]

sin[6,  [tl] (Dpinge +Tz )
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Solve Equations of Motion for Inertia and Damping Coeffi-
cients and Right-Hand-Side vector

System equations of motion in 6 degrees-of-freedom:

system surge, system heave, and pitch for each of the 4 barges.
In[34]:= xForcel;
In[35]:= zForcel;
In[36]:= momentl;
In[37]:= moment2;
In[38]:= moment3;

Form equations of motion as [inertia] {x”’}={rhs}:

Solve for coefficients of inertial matrix...

In[39]:= inertia, , = “Or el xForcel; Simplify[inertia, ;]
. hisge ,

o) 9= +
u t [ 3 ] mlbn.:qc + mlph:a + m2baxqq + Inzph:o msba.zqo * maphtn *
A Al,lzm +A +A +A1,1,

i I:puto i, l]batqa plate

+ A
1. llba.n;o i llpl.ttc

In[40]:= inertia, , = -9, ~¢] XForcel; Simplify[inertia, ,]
ge

lnig

out[40}= 0

In[41]:= inertia, ; = -9 ~¢) XForcel; Simplify[inertia, ;1;

e
‘u.-g-

In[42]:= inertia, , = -9 ~(¢) XForcel; Simplify[inertia, ,];
ge 4

9244,
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In[43]:=

In[44]:=

Inf45]:=

Inf46j:=

Inf47]:

In[48]:

In[49]:

It

Inf50]:

In[51]:

In[52]:

In[53]:=

In[54]:=

In[55]:=

In[56]:=

In[57]:=

In[58]:=

In[59]:=

1nert1alﬁ-—

lnertlaZA

lnertlaz’z =

1nert1azﬂ =

lnertlaLé

lnert132'5 =

1nert1aLl

1nert1a3’2 =

;|.nertJ.a_.’.,3

1nert1a3,4

J.nertlas’s =

1nert1a4'1

J.r.lert:.aq.,2 =

1nert1a4,3 =

1nert1a4A

J.nertJ.aq“5 =

1nert1a5A_—

-3

-3

-3

-2

= -3

= -9

-3

-3

-a

-0

= -9

-3

LE

Tlpia

LIEl xForcel;

L zForcel;

Z1pige €] zForcel;
%u"JTtle°rcel;
©2410ge  [E] zForcel;
03y 10ge LE] zForcel;
Xyge LE] momentl;
Zlyage LE] momentl;
0., 1t] HOmentl;
©2piage LE] momentl;
LN O momentl;
Xiptnge  LE moment?2;
Zlatage 3] moment2;
011090 LE] moment?2;
€2 100e el moment2;
O3ntage [¥] moment2 ;
xlu-q."ltlm°ment3;

Simplify[ il:te::tia.l’5 1;

Simplify [inertiaz,2 1:

Simplify[inertia3,3 1:;
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In[60]:= inertiag , = -8 ~gyoment3;

z
1xfage

In[61]:= inertia. ; = -9, re) moment3;
’ hiage

In[62]:= inertia.; , = -8, = (¢jmoment3;
’ hinge

In[63]:= inertiag ;=-9, . moment3;Simplify[inertia; ;]
’ ninge .

)+

2
Out[63]= J3m. +J3w“ + (§3 - §3ch) (mam, +Al'1:ch

——

€3~ g3p,_“,) : (m3p1.:n +AL’13phbﬁ) *
(sin [eshmq. (el ] Lpinge +Sin [63mw [t] ] Ly . *2Cos [63““,. [t] ] ¢:) "2

)+

[t]] Dyinge +Cos [6; [t]]L; -2 Sin (e, [t]] &5) "2

N

m +m +A +A
3!&:!;0 3pu:¢ 1, 1an.x|;a i, llp.la:a

Cos [6

3hinqe

|
— e —

M3 rge T 03, e +A3'3me,. +A3,3,‘,1““) '*‘As,sjhmw *‘As,s%m'

Right-hand side, {rhs}

Subtract inertia and damping forces from forces, leaving only hydrostatic and gravity
forces, {rhs}...

In[f64}:= rhs = Table[0, {i, maxDof}];

In{65)]:= rhs[1] = xForcel-
((6 red xForcel) xlum" [t] + (azlum,,m xForcel) zlm”"[th»

x’“hhq-
(a"zu.,." (el xForcel) e‘lmq- [t] + (692mq.., ) xForcel) 62t [tl+
(aejm.,,m xForcel) 93‘“_ [t]) H

In[66]:= rhs[2] = zForcel-

((o (¢ ZForcel) X, [tl+ (a‘xu..."“‘l zForcel) Z e LEI+

e] zForcel) 6y, [tl+ (692““.,. - zForcel) 63,..,. [tl+

x"hhq.
(o

(o

elmg.

el zForcel) esm”"[t]) :

e’u..q-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX D. COMPUTER PROGRAMS 175

In{67]:= rhs[3] = momentl-
((o el moment1) Xy [ED+ (az!mq.,,m momentl) 21 L[EI+

xlhhqo
(aelm"..[t] momentl) ST [t] + (aezm".. (t1 momentl) ezum [t]+
(aa’m.,,[t, moment1) e . " [e1) ;

Inf68]:= rhs[[4] = moment2-
((a"xu.,." 1 momentZ) xlmg."[t] + (62!“.“,,[,:l moment2) zlu.,." [t]+

(o

(e

o1y LE] momentz) elmq. [E] + (aem“_,, (el momentz) e2u.,. [t]l+

“ el momentZ) 93_‘“." [t]) :

e’h.{.ng-
Inf69]:= rhs[5] = moment3-

((a"xu..,."[“ moment3) N O (azzmq,"ltl moment3) 2l LEI*

(o

(o

moment3) e, ~[tl+ (a el moment3) 6. [tl+
ge gs

” [t] azunq.

elunq.

e moment3) ezm_" [t} ) ;

6Jh.uqo

Input from Data Files
Constants

In[70]:= p=1000.;g=9.81;

System parameters

Inf71]:= systemFile =
StringTake[inputFiles[1], {2, StringLength[inputFiles[1]] -1}]:;

In[72]:= systemData = ReadList[filePath <> systemFile <> .system, Number, 1] ;
In[73]:= numBarges = systemData[[1] ; dof = numBarges + 2; numBodies =

2 numBarges;

In[{74]:= systemData =
ReadList[filePath <>systemFile <> .system, Number,
4 + 13 numBarges];

In[75]:= Lyjnge = systemData[2];

In[76]:= By;ue. = systemDatal3];
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In[77]:= springk = systembataf4]:
Inf78]:= Do [Lim“ = systemData[[S+13(i~1)]; Print [Lih.n,.] , {1, numBarges}] ;
In[79]:= Do[beamn; = systemData[6 +13(i-1)]; Print[beam;], {i, numBarges}];

Inf80]:= Do [draftib‘ = systemDataf[7 +13(i-1)1;
rge
Print [draftim] {1, numBarges}] ;
In[81]:= Dolheight; = systemData[8+13(i-1)]; Print[height,],
{i, numBarges}] ;
Inf82]:= Do [fr:e:eboardi = height, - draftim ; Print[freeboard;],
{i, numBar:ges}] ;

In[83]:= Do [g = systemDataf[9 +13(i-1)]; Print [gimq ] {1, nu.mBarges}] ;

Zbarge

systemData[[10 +13 (i -1)]; Print [Li ] , {1, numBarges}] ;
P

In[84]:= Do [Lipm- -

In[f85}]:= Do [draft:ilPl W= systemData[[12+13(i-1)];

Print [draftipm.] {1, numBarges}] H

In[86]:= Do [mim, =0, {i,maxBarges}] :
In[87]:= Do [mih = systemData[[14 +13(i-1)]; Print [mih ] , {1, numBarges}] ;
rge rge

In[88]:= Do [J. =0, {i,maxBarges}] :

lb-u:qo

In[f89]:= Do [Ji.,.,,, = systemData[[15+13(i-1)]; Print [Ji.,.q ] {1, numBarges}] ;

In[f90]:= Do [m =0, {i, maxBarges}]

Lotate

In[{91]:= Do [ = systemData[16 +13(i ~1)]; Print [mi - ] , {i, numBarges}] :
'pPlate

mipht-

Inf92]:= Do[ =0, {i,maxBarges}] :

Jiplcto

In[83}]:= Do [J. e = systemDataff17 +13(i-1)]; Print [Jipu: ] , {1, numBarges}] :
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Calculate other system parameters

In[94}]:= Do [If [m. == 0, Print[Estimatingbarge #, i, mass...];
mim =p Li.,.m beamidraftim. - mi,m. :
Print [mim.,. , kg] ] r {1, numBarges}]

In[95]:= Do[If]
Abs [ (m,._hm m ) -p L, beamdraft, ] / (mihw_ +m ) >0.01,
Print[Warning : barge #, i,
is not properlyballasted. Checkmasses & draft.] ] ,
{i, numBarges}]

In[$6]:= Do [If[Jim‘. ==0,

Print[Estimatingbarge #, i, massmomentof inertia...];

0.7 % L. . 2 ) , .
Tparge = Piprge ( 2 ) ; Print [Jium kg m ]] {1, numBarges}]
In[97]:= Do[If[dJ; e, =50,
Print[Estimatingplate #, i, massmomentof inertia...];
0.7 % Ly e 2 ) , .
Ji,m, il S (——‘2—‘) ; Print [J,-?m. kg m ] ] {1, numBarges}]

Calculate barge & plate center of gravity and barge/plate combination C.G. ...

In[98]:= Do [If[giw ==0,

Print{Estimatingbarge #, i, centerofmass...];

gium = 0.8 height,; Print [;ib‘m m] ] ,{i, numBarges}]
In[99]:= Do [5i,m. = draftipm. + freeboard; ; Print [giwt_] {1, numBarges}]

In[100]):= Do [g’- = (mia.rv- gib-rv- e g’.wx-:. ) / (mixurv- il S ) ;
Print[Z5;]1, {i, numBarges}]

Read added mass & damping coefficients from file

In[fl101):= radiationData = ReadList[filePath <>dataFile <> .radn,
Number, 12 numBodies, RecordLists - > True];
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5,5 =ol{ifllsfz}f{jfi1512}];
'J"NWO

In[102]:= Do|[po[a, , =0;B
=0;B; =0,{i,1,5,2},{j,i,5,2}],

Do [% l’jkpx.t.

ik, maxBarges}] :

.3 kplate

In[103]:= Table[inertia; ;, {i,dof}, {j,dof}] //MatrixForm

Infil04]:=n=1;Do [Do [Ai’jkn-:q. = radiationData[n, 1] ;
e - = radiationDatafn, 2];n=n+1,{i,1,5,2},
€¢G,1i,5,2}];
Do [Ai'jx..m. = radiationData[ln, 1]; Birjk,m. = radiationDatafn, 2];

n=n+1,{i,1,5,2},{j,i,5,2}], {k, numBarges}];

Form inertia & damping matrices
In[105):= inertiaMatrix = Table [.1'.11&1:1:i:=1,._’:i s {1i,dof}, {j,dof}};
inertiaMatrix//MatrixForm

In[l06]:= inertiaInverse = Inverse[inertiaMatrix];

In[107}:= @6 (¢]1=0;8,  [t]1=0;6;, [t]=0;

1&uqo

Inf108)]:= inertiaMatrix//MatrixForm
Output Data File

Open output file...

Inf109):= outputFile = filePath <>dataFile <> .matrx
In[110):= output = OpenWrite[outputFile];

The simulation technique is:

« Find hydrostatic forces in {rhs}
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» Solve [inertia]{x"}+[damping] {x’}={rhs} for acceleration{x"}

These steps are carried out by the Fortran program Simulate.

In{l11]:= inertialInverse = Inverse[inertiaMatrix]

Write inertia™' and damping matrices...

Infl112]:= Do[Write[output, inertiaInversefli, j1]1, {i,dof}, {j,dof}]
Infl13]:= Close[outputFile];

Infl14]:= filePath <>dataFile <> .matrx
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D.2.2 Simulation program code

Below is listed the Fortran computer program that performs the simulation of the motions

of the system.

PROGRAM Simulate
This program is designed to give the time history
of the motion of a floating body. The egations
of motion are formulated as a matrix equation.
A Gaussian Elimination subroutine is used to
solve for the acceleration vector,
and then a simple integration scheme is used to
integrate twice to find the displacement time
history. Added mass and radiation damping
coefficients are imported from the output of
the program "Radiation," and excitation forces are
imported from the output of the program "Scatter."”

QOO0 0n000n0n

INTEGER maxElements, maxBarges, maxBodies, maxDOF
PARAMETER (maxElements= 500) ! Max number of elements
PARAMETER (maxBarges= 3) ! Max number of barges
PARAMETER (maxBodies= maxBarges *2) ! Max # bodies
PARAMETER (maxDOF=maxBarges+2) ! Max degrees of freedom

REAL rho, g, pi, kinematicViscosity

REAT. CD, speed
DOUBLE PRECISION Re, ReMax, ReAverage
CHARACTER*15 filename, system, dummyl, time, wave
INTEGER p, g, i, j, k, iota, diagnosticFlag, numPlates
REAL hingegap, length(maxBarges), beam(maxBarges),

& draft(maxBarges), height(maxBarges),

& platelength(maxBarges),

& platebeam(maxBarges), platedraft(maxBarges),

& zetaB(maxBarges),

& zetaP(maxBarges), zeta(maxBarges),

& freeboard(maxBarges)
REAL. mass(maxBarges), platemass(maxBarges),
& moment(maxBarges),
& platemoment(maxBarges), springk, hingeDamping
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REATL, dummy, xelement, zelement, head, maxHead, pressure
REAL, HO, period, omega, lambda0O, wavephase
DOUBLE PRECISION kO, h, waveK, lambda
INTEGER numBarges, numBodies, dof, totalelements,
& totalnodes, element(maxElements,4),
& barge(maxElements), bodynodes,
& bodyelements
REAL node(4*maxElements,3), n(maxElements,3), ni(3),
& magnitude, sidel(maxElements,3),
& side2(maxElements,3),
& deltaarea(maxElements), xbar(maxElements),
& ybar(maxElements),
& zbar(maxElements), pivot(maxBarges),
& center(maxBarges)
REAL scatterAmp(maxBodies,5), scatterPhase(maxBodies,5)
DOUBLE PRECISION forceBargeX(maxBarges),
& forceBargeZ (maxBarges),
& forceBargel(maxBarges), forcePlateX(maxBarges),
& forcePlateZ (maxBarges), forcePlateO(maxBarges)
DOUBLE PRECISION scatterBargeX(maxBarges),
& scatterBargeZ (maxBarges),
& scatterBargeO (maxBarges),
& scatterPlateX(maxBarges),
& scatterPlateZ(maxBarges),
.& scatterPlatel (maxBarges)
DOUBLE PRECISION radiationBargeX(maxBarges),
& radiationBargeZ (maxBarges),
& radiationBarge(0(maxBarges),
& radiationPlateX(maxBarges),
& radiationPlateZ(maxBarges),
& radiationPlateO(maxBarges)
DOUBLE PRECISION bllBarge(maxBarges),
& b33Barge(maxBarges),
& b55Barge(maxBarges), bllPlate(maxBarges),
& b33Plate(maxBarges),
& b55Plate(maxBarges)
DOUBLE PRECISION inertiaInverse(maxDOF, maxDOF),
& dragPlateZ (maxBarges), dragPlateO(maxBarges),
& staticBargeX(maxBarges), staticBargeZ(maxBarges),
& staticBargeO(maxBarges), hingeDamping0 (maxBarges)
DOUBLE PRECISION duration, deltat, t, dummy2
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INTEGER timesteps, step, skip

DOUBLE PRECISION displacement(maxDOF), dispnew(maxDOF),
& velocity(maxDOF), velnew(maxDOF),

& acceleration(maxDOF),

& accelnew(maxDOF) ,rhs (maxDOF) ,hingePower (maxBarges-1)

C *kkkhkkkkkkk*k Constants
pi= 4. *ATAN(l.)
g= 9.81 ! acceleration due to gravity (m~2/s)
rho= 1000. ! seawater density (kg/m~3)
kinematicViscosity=1.1l4e-6
C kinematic viscosity of water(m~2/s)
CDh = 1.2 ! Plate drag coef. (est. from Hoerner)
CD=0.0 ! No drag when using free response damping coeffs
! **%%*%x* NOTE: see below- CD now input by user

C kkhkkkkhkkikkk Data files

WRITE(*,*) ‘Enter name for data files. Enclose name in’
WRITE(*,*) 'single quotes and do not use any punctuation:’
READ(*,*)filename! filename.in contains the names of the
! system, wave, integr8, and time data files.
OPEN(UNIT=1,FILE=(filename//’.in’),STATUS='UNKNOWN" )
READ(1l,*)system,wave,dummyl,time! skip integr8 filename
WRITE(*,*) 'System,Wave,Integration,&Time data files:’
WRITE(*,*) system, wave, dummyl, time

OPEN (UNIT= 2, FILE= (system // ‘.system’),
& STATUS= ’'UNKNOWN’)

OPEN (UNIT= 3, FILE= (wave // ’'.wave’),
& STATUS= 'UNKNOWN’)

OPEN (UNIT= 5, FILE= (system // '.mesh’),
& STATUS= ‘UNKNOWN')

OPEN (UNIT= 6, FILE= (filename // ‘.radn’),
& STATUS='UNKNOWN ‘ )

OPEN (UNIT= 7, FILE= (filename // '.scatr’),
& STATUS= ‘UNKNOWN')

OPEN (UNIT= 8, FILE= (filename // ‘.sim’),
& STATUS= 'NEW’)

OPEN (UNIT= 9, FILE= (filename // ’.matrx’),
& STATUS= 'UNKNOWN’)
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OPEN (UNIT= 10, FILE= (time // ’'.time’),
& STATUS= ‘UNKNOWN')

OPEN (UNIT= 11, FILE= (filename // ’.out’),
& - STATUS= ‘UNKNOWN’)

OPEN (UNIT= 12, FILE= (filename // '.powr’),
& STATUS= ‘UNKNOWN’ )

WRITE(*,*) ‘Enter 1 for diagnostic output, 0 for none:’
READ(*,*) diagnosticFlag

WRITE(*,*) ’‘Enter water depth (meters):’
READ(*,*) h

WRITE(*,*) 'Enter plate drag coefficient:’,
& ‘(0 for model tests, 1.2 for prototype)’
READ(*,*) CD

WRITE(*,*) ’‘Enter water mass-density (rho, in kg/m"3):’,
& "(1000. for model tests, 1030. for prototype)’
READ(*,*) rho

C ****x*x%x%*+ System parameters

READ(2,*) numBarges ! # of barges

numBodies= 2 *numBarges ! # of bodies (barges & plates)
dof= numBarges +2 ! # of degrees-of-freedom

READ(2,*) hingegap ! gap between barges at hinges (m)
READ(2,*) hingeDamping ! skip hinge damping coefficient
READ(2,*) springk ! mooring spring constant (N / m)

DO 10 j= 1, numBarges
READ(2,*) length(j) ! barge length (m)
IF (diagnosticFlag .EQ. 1)
& WRITE(*,*) ‘Length *,Jj,‘=’, length(j)

READ(2,*) beam(j) ! barge beam (m)

READ(2,*) draft(3j) ! barge draft (m)

READ(2,*) height(j) ! barge height (m)

READ(2,*) zetaB(]) ! barge CG distance from deck (m)
READ(2,*) platelength(j) ! plate length (m)

READ(2,*) platebeam(j) ! plate beam (m)
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READ(2,*) platedraft(j) ! from surface to plate (m)

READ(2,*) dummy ! skip mesh element size

READ(2,*) mass(3) ! barge mass (kg)

READ(2,*) moment(j) ! barge pitch mass moment of
! inertia about its CG (kg m™2)~’

READ(2,*) platemass(]j) ! plate mass (kqg)

READ(2,*) platemoment(j) ! plate pitch mass moment of
! inertia about its CG (kg m™2)°

C ****x%x*xx**x* Calculate/Estimate other system parameters

C *****xk*+* FEstimate barge mass if not specified
IF (mass(j) .EQ. 0.) THEN
WRITE(*,*) '‘Estimating barge mass.’
mass(j)= rho *length(j) *beam(j) *draft(j) -
& platemass(j)
WRITE(*,*) 'Barge ’, j, 'mass =’, mass(j), ‘kg’
ENDIF
IF ( ( mass(j) +platemass(j) -
& rho*g *length(j)*beam(j)*draft(j) )
& [/ ( mass(j) +platemass(j) ) .GT. .01 ) THEN
WRITE(*,*) ’‘Warning: Barge #', J,
& ’is not propesrly ballasted. Check masses & draft.’
ENDIF

C Estimate barge- mass moment of inertia if not given
IF (moment(j) .EQ. 0.) THEN
WRITE(*,*) ‘Es timating barge mass moment of inertia.’
moment(j)= mass(j) * ( 0.7 *length(j) /2. )**2
WRITE(*,*) ’Barge ’, j, ’'mass moment of inertia =',’
& moment.-(j), ‘kg m~2°
ENDIF

C Estimate barge- mass moment of inertia if not given
IF (platemoment( j) .EQ. 0.) THEN
WRITE(*,*) 'Es timating plate mass moment of inertia.’

platemoment(j) = platemass(j) *
& ( 0.7 *platelength(j) /2. )**2

WRITE(*,*) 'Plate ’, j, 'mass moment of inertia =’,
& platemoment(j), ‘kg m~2°
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ENDIF

C * Estimate barge center of mass if not specified
IF (zetaB(j) .EQ. 0.) THEN
WRITE(*,*) ’'Estimating barge center of mass.’
zetaB(j)= 0.8 *height(j)
WRITE(*,*) ’'Barge ’, j, ‘center of mass =',
& zetaB(]j), ‘m’
ENDIF

C **x%x%*x*x*x* Calculate unit center of mass
zeta(j)= (mass(j) *zetaB(j) +platemass(j) *zetaP(j) ) /
& ( mass(j) +platemass(j) )

freeboard(j)=height(j)-draft(j)! the distance between
! the deck and the waterline

C Calculate CG distance from deck for plate (zetaP)
zetaP(j)= platedraft(j) + freeboard(j)

10 CONTINUE ! j loop (numBarges)

C ***xxxxx*** Find center and pivot point for each barge
center(l)= ( length(l) + hingegap ) /2.
pivot(l)= O.
DO 780 j= 2, numBarges
DO 782 i= 1, j-1
pivot(j)= pivot(j) +length(i) +hingegap
782 CONTINUE
center(j)= pivot(j) + (length(j) +hingegap ) /2.
780 CONTINUE

IF (diagnosticFlag .EQ. 1) THEN
write(*,*) 'Pivot, Center:’

do 785 j= 1, numBarges
write(*,*) pivot(j), center(j)
785 continue
ENDIF

c % de %k de d ko de oKk Wave parameters
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READ(3,*) period ! wave period (s)
READ(3,*) HO ! deep water wave height (m)
WRITE(*,*) HO, ‘= deep water wave height (m)’
WRITE(*,*) period, '= deep water period (s)~’
omega= 2. *pi /period ! wave circ. freq (rad/s)
lambda0= g *period *period /2. /pi ! deep wavelength (m)
k0= 2. *pi /lambda0 ! deep water wave #
wavephase= 0.
CALL wavenumber (kO,h,waveK) ! find finite depth wave #
lambda= 2. *pi /wavekK

WRITE(*,*) ‘Wave lengths: deep, actual:’
WRITE(*,*) lambda0, lambda

C ***xx**%*x%* Time integration parameters
READ(10,*) duration ! simulation duration (s)
READ(10,*) timesteps ! # of time steps

deltat= duration /DBLE(timesteps) ! time step (s)
READ(10,*) skip ! Output only every (skip)th step

C ***x%x%x*%x***x Tpnjitial conditions:
c surge(m) ,heave (m),pitchl(degrees),...
READ(10,*) (displacement(i), i= 1, dof)

DO 290 j= 3, dof ! Convert IC’s from degrees to radians
displacement(j) = displacement(j) *pi /180.d0
290 CONTINUE

C khkkkhkhkkkkik Panel mesh

totalnodes= 0

totalelements= 0

DO 100 k= 1, numBodies

C Read in # of nodes and coordinates of each node

READ(5,*) bodynodes

c write(*,*) totalnodes

IF (totalnodes .GT. 4*maxElements) THEN
WRITE(*,*) ‘Too many nodes.’
WRITE(*,*) ‘Increase parameter ' ’'maxElements’’ ’
WRITE(*,*) 'in program code. '’
STOP
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ENDIF

DO 20 i= totalnodes+l, totalnodes +bodynodes

READ(5,102) (node(i,j), j=1, 3)

DO 30 j= 1, 3 ! To avoid divide-by-zero errors:
IF (node(i,j) .EQ. 0.) node(i,j)= l.e-9

30 CONTINUE

20 CONTINUE

102 FORMAT(3f12.6)

C Read in # of elements and node #s of vertices &
C barge # of each element
READ(5,*) bodyelements
c write(*,*) totalelements
IF (totalelements .GT. maxElements) THEN
WRITE(*,*) "'Too many elements.’
WRITE(*,*) ’'Increase parameter ’’'maxElements’’ -
WRITE(*,*) ‘in program code.’
STOP
ENDIF

DO 40 i= totalelements+l, totalelements +bodyelements
READ(5,103) (element(i, j), J= 1, 4), barge(i)

DO 42 j= 1, 4
element(i,j)= element(i,j) + totalnodes

42 CONTINUE

40 CONTINUE

totalnodes= totalnodes +bodynodes
totalelements= totalelements +bodyelements

100 CONTINUE ! k loop (numBodies)
103 FORMAT(5I6)

IF (diagnosticFlag .EQ. 1) THEN
WRITE(*,*) totalnodes, ’ nodes:’

DO 106 i= 1, totalnodes

write(*,102) (node(i,j), j=1, 3)

106 CONTINUE

WRITE(*,*) totalelements, ‘' elements:’
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DO 108 i= 1, totalelements

write(*,103) (element(i,j), j= 1, 4), barge(i)
108 CONTINUE

ENDIF

C **xx*x**x**x T,0o0op: find edge vectors, normal, area,
C and centroid of each element
DO 50 i= 1, totalelements

C ****x*x*%k*x*x* Find element edge vectors (sidel & side2
C ****x*x%x*%x** gre the components of the vectors along two
C ****xx%x*x*x* odges of element 1i).
DO 60 j= 1, 3
sidel (i, j)= node( element(i,2), Jj) -
& node(element(i,l), 3J)
side2 (i, j)= node( element(i,3), j) -
& node(element(i,2), 3J)
60 CONTINUE

C ***x**xx*x%x** Pind unit normal for each element
ni(l)= sidel(i,2) *side2(i,3) -sidel(i,3) *side2(i,2)
ni(2)= sidel(i,l) *side2(i,3) -sidel(i,3) *side2(i,l)
ni(3)= sidel(i,l) *side2(i,2) -sidel(i,2) *side2(i,l)
magnitude=SQRT(ni(l)*ni(l)+ni(2)*ni(2)+ni(3)*ni(3))

IF (diagnosticFlag .EQ. 1) write(*,*) ’'Magnitude:’,

& i, magnitude
DO 70 j= 1, 3
n(i,j) = ni(j) /magnitude

70 CONTINUE

C Find element areas:

C The element area = magnitude of sidel cross

C side2 (assumes parallelogram elements)
deltaarea(i)= SQRT( ( sidel(i,2) *side2(i,3) -

& sidel(i,3) *side2(i,2) )**2 +

& (sidel(i,3)*side2(i,l)-sidel(i,l)*side2(i,3))**2+
& (sidel(i,l)*side2(i,2)-sidel(i,2)*side2(i,1))**2)
c write(*,*) 'deltaarea(i) =', deltaarea(i)

C *****x Find centroid (xbar,ybar,zbar) of each element
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xbar(i)= 0.
ybar(i)= 0.
zbar(i)= 0.
DO 80 j= 1, 4

xbar(i)= xbar(i) + node( element(i,j), 1 ) /4.
ybar(i)= ybar(i) + node( element(i,j), 2 ) /4.
zbar(i)= zbar(i) + node( element(i,j), 3 ) /4.

80 CONTINUE
50 CONTINUE

write(*,*) ‘totalelements =’, totalelements
IF (diagnosticFlag .EQ. 1) THEN
DO 55 i= 1, totalelements
write(*,*) 1
write(*,*) 'n:’, (n(i,3j), j= 1, 3)
write(*,*) ’‘deltaarea:’, deltaarea(i)
write(*,*) ‘centroid:’, xbar(i), ybar(i), zbar(i)
55 CONTINUE
ENDIF

C ***x*xx**x** Road Wave Scattering Forces on each body
write(*,*) ‘Wave scattering forces:’

DO 135 k= 1, numBodies ! for each body (barge or plate)
DO 130 p=1, 5, 2 ¢ for surge, heave, & pitch

READ(7,*) scatterAmp(k,p), scatterPhase(k,p)

write(*,*) scatterAmp(k,p), scatterPhase(k,p)

130 CONTINUE

135 CONTINUE

C Read Radiation Damping coefficients on each body
write(*,*) 'Radiation Damping coefficients:’

DO 165 k= 1, numBarges ! for each body (barge or plate)
READ(6,*) dummy2, bllBarge(k) ! for surge,
READ(6,*) dummy2, dummy2 ! (skip stuff)

READ(6,*) dummy2, dummy2 !  (skip stuff)

READ(6,*) dummy2, b33Barge(k)! (skip added mass) heave,
READ(6,*) dummy2, dummy?2 ! (skip stuff)

READ(6,*) dummy2, b55Barge(k) ! and pitch.
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READ(6,*) dummy2, bllPlate(k) ! Repeat for plate.

READ(6,*) dummy2, dummy?2 ! (skip stuff)
READ(6,*) dummy2, dummy?2 ! (skip stuff)
READ(6,*) dummy2, b33Plate(k)

READ(6,*) dummy2, dummy2 ! (skip stuff)

READ(6,*) dummy2, b55Plate(k)

write(*,*) ’‘barge #', k

write(*,*) bllBarge(k), b33Barge(k), b55Barge(k)
write(*,*)

write(*,*) bliPlate(k), b33Plate(k), b55Plate(k)
165 CONTINUE '

C Equations of motion:

C [inertia]{acceleration} ={force}

C where the transpose of {displacement} is:
C {system surge, heave, pitchl, pitch2, ...}

C ***x*%x***x** Read inverse of [inertia] matrix.
DO 140 p= 1, dof

DO 150 g= 1, dof

READ(9,*) inertialInverse(p,q)

150 CONTINUE

140 CONTINUE

IF (diagnosticFlag .EQ. 1) THEN

write(*,*) ’'Inverse of inertia matrix:’

DO 252 i= 1, dof

write(*,*) ( REAL(inertiaInverse(i,j)), j=1,dof)
252 CONTINUE

ENDIF

C Write parameters and initial conditions
C to .sim output file

WRITE(8,*) HO, period, REAL(lambda)
WRITE(8,*) numBarges

WRITE(8,*) hingegap
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WRITE(8,*) (length(i),draft(i),height(i),platelength(i),
& platedraft(i), i= 1, numBarges)
WRITE(8,*) timesteps /skip +1,
& REAL(REAL(skip)*deltat ) !# time steps & delta t
WRITE(8,101) ( REAL( displacement(i) ), i=1, dof )

ReAverage= 0.
ReMax= 0.

C kkkhkkkkkkikk

C ***k*xkk*kx*x* Main time-stepping loop
DO 300 step= 1, timesteps

t= DBLE(step) *deltat

DO 420 i= 1, dof
rhs(i)= 0.d0
420 CONTINUE
DO 425 i= 1, numBarges
staticBargeX(i)= 0.d0
staticBargeZ(i)= 0.d0
staticBargeO(i)= 0.d0
dragPlatez(i)= 0.d0
dragPlateO(i)= 0.dO
hingeDamping0(i)= 0.d0
425 CONTINUE

C ***%x*x***x*x* Wave Scattering force

C Here, the scattering forces on each individual body

C are calculated.

C ! scatterBargeX(i) is the scattering force at time t
C ! on barge i in the x-direction; z and 0 signify

C ! scatter(i) is the scattering force at time t on the
C ! hinged-barge system in the i-th degree of freedom
C Calculate instantaneous scatterimg forces

C on each barge and plate from the scattering

C force amplitude and phase.

DO 600 i= 1, numBarges
scatterBargeX(i)= scatterAmp(2*i-1,1) *HO /2. *
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& DCOS(scatterPhase(2*i-1,1)+waveK*DBLE (center(i))-
& DBLE(omega) *t )

scatterBargeZ(i)= scatterAmp(2*i-1,3) *HO /2. *
& DCOS(scatterPhase(2*i-1,3)+waveK*DBLE (center(i))-
& DBLE (omega) *t )

scatterBarge0(i)= scatterAmp(2*i-1,5) *HO /2. *
& DCOS (scatterPhase(2*i-1,5)+waveK*DBLE (center(i))-
& DBLE(omega) *t )

scatterPlateX(i)= scatterAmp(2*i,l) *HO /2. *
& DCOS(scatterPhase(2*i,1l)+waveK*DBLE (center(i))-
& DBLE(omega) *t )

scatterPlateZ(i)= scatterAmp(2*i,3) *HO /2. *
& DCOS(scatterPhase(2*i,3)+waveK*DBLE (center(i))-
& DBLE(omega) *t )

scatterPlatel0(i)= scatterAmp(2*i,5) *HO /2. *
& DCOS(scatterPhase(2*i,5)+waveK*DBLE (center(1i))-
& DBLE(omega) *t )

600 CONTINUE

C **x*%x**%** Wave Radiation damping force

C Here, the radiation damping forces on each individual
C body are calculated.

DO 620 i= 1, numBarges

radiationBargeX(i)= -bllBarge(i) *(velocity(l) -

& zetaB (i) *velocity(i+2))
radiationPlateX(i)= -bllPlate(i) *(velocity(l) -

& zetaP (i) *velocity(i+2))
radiationBargez(i)= -b33Barge(li) *(velocity(2) -

& (length(i)+ hingegap) /2.d0 *velocity(i+2))
radiationPlateZ (i)= -b33Plate(i) *(velocity(2) -

& (length(i)+ hingegap) /2.d0 *velocity(i+2))

DO 630 j= 1, i-1
radiationBargeZ(i)=radiationBargeZ(i)-

& b33Barge(i)*(-(length(j)+hingegap)*velocity(j+2))
radiationPlateZ(i)=radiationPlateZ (i)-

& b33Plate(i)*(-(length(j)+hingegap)*velocity(j+2))

630 CONTINUE

radiationBargeO(i)= -b55Barge(i) *velocity(i+2)
radiationPlateO(i)= -b55Plate(i) *velocity(i+2)
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620 CONTINUE

C ******xx*x*x* Hinge damping force
DO 640 i= 1, numBarges -1
C add hinge moment on barge ‘i’ from the
C ‘i+l1’ barge on the right
hingeDampingO(i)= hingeDamping0O(i) +
& hingeDamping* (velocity(i+l1+2)-velocity(i+2))
C add hinge moment on barge "i+l’ from the
C 'i’ barge on the left
hingeDamping0(i+1l)= hingeDampingO(i+1) +
& hingeDamping* (velocity(i+2)-velocity (i+1+2))
640 CONTINUE

C ***x%x**xx%x** "Hydrostatic" force

C ***%x**x*x** T,o0p through each element;
c * find water column above each.
DO 320 iota= 1, totalelements

- xelement= 0. +displacement(1l)
zelement= freeboard(l) +displacement(2)
DO 322 j= 1, barge(iota) -1

Xelement= xelement +

& (length(j)+hingegap) *DCOS(displacement(j+2))
zelement= zelement -
& (length(j)+hingegap) *DSIN(displacement(j+2))

322 CONTINUE

Xelement= xelement +
& ( xbar(iota)-pivot(barge(iota)) )*
& DCOS( displacement(barge(iota)+2) ) -
& ( freeboard(barge(iota)) -zbar(iota) ) *
& DSIN( displacement(barge(iota)+2) )
zelement= zelement -

& ( Xbar(iota)-pivot(barge(iota)) )*

& DSIN( displacément(barge(iota)+2) ) -

& ( freeboard(barge(iota)) -zbar(iota) ) *
& DCOS( displacement(barge(iota)+2) )
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head= HO /2. *COS( REAL(waveK) *xelement - omega *t ) -
& zelement

C For submerged parts:

maxHead= (freeboard(barge(iota)) -zbar(iota) ) /
& DCOS( displacement(barge(iota)+2))

IF ( head .GT. maxHead ) head = maxHead

C No hydrostatic force on plates:

IF (( zbar(iota) .LT.
& -.9 *platedraft(barge(iota)) ) .AND.
& zbar(iota) .LT. -1l.1 *draft(barge(iota)) )
& head= 0.

pressure= rho *g *head
IF (head .LE. 0) pressure = 0.

staticBargeX(barge(iota) )= staticBargeX(barge(iota)) +
& pressure * (
& -n(iota,l) *DCOS(displacement(barge(iota)+2)) -
& n(iota,3) *DSIN(displacement(barge(iota)+2))
& ) *deltaarea(iota)

staticBargeZ (barge(iota) )= staticBargeZ(barge(iota)) +
& pressure * (
& -n(iota,3) *DCOS(displacement(barge(iota)+2))
& +n(iota,l) *DSIN(displacement(barge(iota)+2))
& ) *deltaarea(iota)

staticBargel(barge(iota) )= staticBargel(barge(iota)) +
& pressure *deltaarea(iota) *( -n(iota,3) *
& ( -( xbar(iota) -center(barge(iota)) ) ) +
& (-n(iota,l)) *( freeboard(barge(iota)) -
& zbar(iota) ) )

if (step .EQ. 1) write(ll,*) xelement, head
320 CONTINUE

c ***%* This line just adds the buoyancy of the plate...
c ***%*%* use only for MWP model scale.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX D. COMPUTER PROGRAMS 195

staticBargeZ(2)= staticBargeZ(2) +rho*g*0.3*0.3*0.013

if ( (step .EQ. 1) .OR. (step .EQ. timesteps) ) then

write(*,*) 'Hydrostatic forces on individual barges:~’

do 324 i= 1, numBarges

write(*,*) ’'Barge #’, i, "z’

write(*,*) ‘staticBargeX, Z, and 0 =’,staticBargeX(i),
& staticBargeZ (i), staticBargeO(i)

324 continue

endif

C ****xx%x**k** Viscous Drag and
C ****xx%x**x*x Reynolds number
numPlates =0
DO 920 i= 1, numBarges
IF (platelength(i) .GT. 0) numPlates= numPlates +1
920 CONTINUE
DO 900 i= 1, numBarges
IF (platelength(i) .GT. 0.) THEN
speed= velocity(2)
DO 910 j= 1, i-1
speed= speed -velocity(2+j) *
& (length(j) +hingegap)
910 CONTINUE
speed= speed - velocity(i+2) *
& (length(i) +hingegap) /2.
dragPlateZ(i)= -CD *rho /2. *speed *ABS(speed) *
& platelength(i) *platebeam(i)
dragPlatel(i)= -CD *rho /2. *velocity(i+2) =*
& ABS(velocity(i+2))*platelength(i)*platebeam(i)*
& (platelength(i) /2. *0.5)**2
speed= ABS(speed)
Re= speed *platebeam(i) /kinematicViscosity
IF (Re .GT. ReMax) ReMax = Re
ReAverage= ReAverage +
& Re /REAL(timesteps *numPlates)
ENDIF
9500 CONTINUE

C *****x*xxx** Right-hand-side force vector {rhs}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX D. COMPUTER PROGRAMS 196

C {rhs}={gravity}+{scattering force} +

C {"hydrostatic" force}

C +{viscous drag}+{radiation damping}+{spring force}
C +{hinge damping}

DO 352 i= 1, numBarges
forceBargeX(i)= scatterBargeX(i) +staticBargeX(i) +

& radiationBargeX (i) -springk *displacement(l)
forceBargeZ (i)= scatterBargeZ (i) +staticBargeZ (i) +
& radiationBargeZ (i) -mass(i) *g
forceBarge0O(i)= scatterBargel(i) +staticBargeO(i) +
& radiationBargeO (i) +hingeDampingO (i)

forcePlateX(i)= scatterPlateX(i) +radiationPlateX(i)
forcePlateZ (i)= scatterPlateZ (i) +dragPlateZ (i) +

& radiationPlateZ (i) -platemass(i) *g
forcePlateO(i)= scatterPlatel(i) +dragPlatelO(i) +
& radiationPlateO (i)

352 CONTINUE
DO 350 i= 1, dof
350 CONTINUE

rhs(1l)= 0.d0
rhs(2)= 0.d40
DO 353 i= 1, numBarges
rhs(i+2)= 0.d0
353 CONTINUE

DO 354 i= 1, numBarges

rhs(1l)= rhs(l) +forceBargeX(i) +forcePlateX(1i)
rhs(2)= rhs(2) +forceBargeZ(i) +forcePlateZ (i)
rhs(i+2)= forceBargel (i) +forcePlatel(i)

354 CONTINUE

DO 355 i= 2, numBarges
rhs(3)= rhs(3) -(length(l) +hingegap) /2.d0 *
& ( (forceBargeX(i) +forcePlateX(i)) *
& DSIN(displacement(3)) +
& (forceBargez(i) +forcePlateZ(i)) *
& DCOS(displacement(3)) ) +
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zeta(l)*(forceBargeX(i)*DCOS(displacement(3)) -
forceBargeZ (i) *DSIN(displacement(3)) +
forcePlateX (i) *DCOS (displacement(3)) -
& forcePlateZ (i) *DSIN(displacement(3)) )
355 CONTINUE
rhs(3)= rhs(3) +(zeta(l) -zetaB(l)) *
& ( forceBargeX(l) *DCOS(displacement(3)) -
& forceBargeZ(l) *DSIN(displacement(3)) )
& +(zetaP(l) -zeta(l)) *
&
&

R R R

( -forcePlateX(1l) *DCOS(displacement(3)) +
forcePlateZ (1) *DSIN(displacement(3)) )

DO 356 i= 2, numBarges
rhs(i+2)= rhs(i+2) -(length(i) +hingegap) /2.d0 *
& ( (forceBargeX(i) +forcePlateX(i)) *
& DSIN(displacement (i+2)) +
& (forceBargez(i) +forcePlatezZ(i)) *
& DCOS (displacement (i+2)) )
rhs(i+2)= rhs(i+2) -
forceBargeX(i)*zetaB(1)*DCOS(displacement(i+2)) +
forceBargeZz (i) *zetaB (i) *DSIN(displacement(i+2)) -
forcePlateX (i) *zetaP (1) *DCOS(displacement(i+2)) +
forcePlatez (i) *zetaP (i) *DSIN(displacement(i+2))

R

DO 357 j= i+l, numBarges
rhs(i+2)= rhs(i+2) - (length(i) +hingegap) *
& ( (forceBargeX(j) +forcePlateX(j)) *
& DSIN(displacement (i+2)) +
& (forceBargeZ(j) +forcePlatez(j)) *
& DCOS(displacement (i+2)) )
357 CONTINUE

356 CONTINUE

¢ write(*,*) 'rhs:’, ( REAL(rhs(i)), i= 1, dof)

c rhs(l)= 0.d0

C ***x%xx**%xx* Solve {accelnew} = Inverse([inertia]) {rhs}

DO 800 i= 1, dof
accelnew(i)= 0.d0
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DO 810 j= 1, dof
accelnew(i)= accelnew(i) +
& inertiaInverse(i,j) *rhs(j)
810 CONTINUE
800 CONTINUE

C write(*,*) 'RHS, accelnew’

c do 365 i= 1, dof

c write(*,*) real(rhs(i)), real(accelnew(i))
c365 continue

write(*,*) ’{rhs}, [inertia]{accelnew}’

write(*,*) ’(NOTE: These 2 columns should be equal!’
do 366 i= 1, dof

sum= 0.d0

do 367 j= 1, dof

sum= sum+ inertia(i,j) *accelnew(3j)

c367 continue

Cc write(*,*) REAL(rhs(i)), REAL(sum)

c366 continue

Qa0 00a0a0

c write(*,*) ( REAL(accelnew(i)), i=1, dof)
¢ accelnew(l)= 0.

C ***x%*%%%x** Tntegration loop
DO 380 i= 1, dof
velnew(i)= velocity(i) +
& ( acceleration(i) + accelnew(i) ) /2.d0 *deltat
dispnew(i)= displacement(i) +
& ( velocity(i) + velnew(i) ) /2.d0 *deltat
380 CONTINUE

C ***x*xkx*%x* Power output
DO 385 i= 1, numBarges -1
hingePower(i)= hingeDamping *
& ( velnew(i+3) -velnew(i+2) )**2
385 CONTINUE

C ***%x*xkx** Qutput every (skip)-th time step
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IF ( ( REAL(step) /REAL(skip) -step /skip ) .LT.
& .00001) THEN
WRITE(8,101) ( REAL(dispnew(i)), i= 1, dof )
WRITE(12,104) REAL(t),
& ( REAL(hingePower(i)), i= 1, numBarges-1 )
ENDIF

DO 390 i= 1, dof
displacement(i)= dispnew(1i)
velocity(i)= velnew(i)
acceleration(i)= accelnew(1i)
390 CONTINUE

300 CONTINUE

101 FORMAT(8F13.7)
104 FORMAT(3F15.3)

WRITE(*,*) 'Average Reynolds number =’, ReAverage
WRITE(*,*) ’'Maximum Reynolds number =’, ReMax

STOP
END
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D.2.3 Animation program code

Below is listed the Mathematica program listing that performs the animation of the time
history of the system’s motion.

Hinged-Barge System Animation

Load geometry commands that allow easy rotation of shapes and animation of graphics:

In[l15]:= <<Geometry‘Rotations’

In{l116]:= <<Graphics‘/Animation’
User Input

inputPath is the path to the folder which contains the input data file.

In[117]:= inputPath = Documents : Dave’s Docs : Research : Simulationdata :;
inputPath="Documents:Dave’s Docs:Research:Ohl’s MWP data- converted:”;

dataFile is the name of the time history file.

In[f118]:= dataFile = MWPPrototype;
Constants

p 1s the mass density of seawater, g is the acceleration due to gravity:

In[119]:= p=1030.;g=9.81;
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Data Input

Infl20]:= history =
ReadList[inputPath <>dataFile <> .sim, Number, RecordLists
- > Truel;

Here the time history data file is specified. The path name must be given here. The data file

format is:

Deep-water wave height
Deep-water period

# of barges

gap between barges at hinges
lengths of barge 1, 2, ...
drafts of barge 1, 2, ...
heights of barge 1, 2, ...
distance from deck to barge 1 center of mass
lengths of plate 1, 2, ...

drafts of plate 1, 2, ...

# of time steps

At

...and then
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surge, heave, pitchl, pitch2, ...

...repeated for each time step, each step on a new line, where pitchl is the pitch angle of

the first power barge, and positive angles are pitching up.
Wave parameters

Deep-water wave height, period, circular frequency, wavelength, and wave number:

In[l121]:= HO =Part[ Part[ history, 1], 1]

out[121]= 1.5

In[122]:= T =Part[ Part| history, 1], 2]

outr122j= 1.

Inf123]:= A =Part[ Part[ history, 1], 3]
Out[f1l23]= 71.9821

2

I. 124 := = —
n[ J:= o=

out[l24j= 0.897598

In[125]:= A0 =
2

Out[l25]= 76.5042

In[126]:= kO = ——

out[126]= 0.0821286
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In[127}]:= h=20.;

FindRoot[k Tanh[kh] -kO0 ==0, {k, k0}]
Out[f127]= {k->0.0872881}

27w
In[fl28]:= k= —
[ ] 5y

Out[128]= 0.0872881

System Data

All dimensions are S.I. For example, lengthl is the length of the first barge. hingegap is

the horizontal distance between two barges.

In[f129]:= numBarges = Part|[ Part[ history, 2], 1]

Out[l129)]= 3
hingegap is the gap between the barges at the hinges:

In[130]:= hingegap = Part|[ Part[ history, 3], 1]

Out[130]= 1.25

System geometry: barges and plates
(Turn off spelling warning):
In[{131]:= Off[General :: spelll];

In[132]:= length = Table[ Part[ Part[ history, n+3]1, 1], {n, 1, numBarges}]

out[132]= {14.65,6.65, 14.65}

In[133]:= On[General :: spelll}];
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In[134]:= draft = Table[ Part[ Part{ history, n+3], 2], {n, 1, numBarges}]

out[f134j= {1.1,1.7,1.1}

In[135]:= height = Table[ Part[ Part[ history, n+3], 3], {n, 1, numBarges}]

out[135]= (2.3,2.9,2.3}

Inf136)]:= platelength = Table[Part[Part[history,n+31,4], {n, 1, numBarges}]

out[136]= {0.,8.,0.}

In[137]:= platedraft = Table[Part[Part[history, n+3], 5], {n, 1, numBarges}]

Outf137]= {0.,8.,0.}
freeboard is the distance between the deck and the waterline

In[138]:= freeboard = height - draft

out[138]= {1.2,1.2,1.2}
plotwidth is the width of the animation

In[139]:= plotwidth = 2length[1l] +Sum[ length[n]], {n, 1, numBarges} ];

Time parameters:

In[140]:= timesteps = Part[ Part[ history, 4 + numBarges}], 1]

Out[140}= 601
NOTE: comment out the following line to process the entire animation:

If[timesteps>100,timesteps=100];
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Infl41l]:= At = Part{[ Part[ history, 4 + numBarges], 2]

Oout[I41j= 0.1

Displacement time history

header is the number of lines of data above the time history data:
Inf142]:= header = 4 + numBarges;

X, Z, and @ are the time histories of the MWP system displacement
In[143]:= x =Table[history[i + header, 1], {i, timesteps}];
Inf144]:= z = Table[history[i + header, 2], {i, timesteps}];

In[145):= 6 =Table{
Table[ historyfi + header, j + 2], {j , numBarges},
{i, timesteps} 11;

Define Movement of Bodies

bargeOriginn is the point from which barge n is drawn; first, the barge 1’s origin point is

located at the barge’s rest position:
In[146]:= bargeOrigin, = Table[ {0, freeboard[1]}, {i, timesteps}];
Then, barge 1’s origin point is translated by x and z:

In[147]:= bargeOrigin, = Table[bargeOrigin, [iJ}+{x[i]l, z[i]}, {i, timesteps}];
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Now, a loop does the following: « finds the origin points of barges 2 on... ¢ bargeTrans-
latedn is a list of the points that define the shape of barge n, translated so that they start
at bargeOriginn ¢ bargeRotatedn is a list of the points that define the shape of barge n,

rotated about the origin poiht

» the origin for each barge 1s rotated about the previous barge’s origin point.
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